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Abstract

Different notions of a distance can be defined on the unit tangent bundle of the
hyperbolic plane. Here we prove by elementary methods that a geometric definition
and a dynamical definition distance are equivalent.

We denote the hyperbolic distance on the hyperbolic plane H by d. For v € T'H, ¢,
is the unit speed geodesic with ¢, (0) = v. Let v,w € T'H. We define

di(v,w) := d(cy(0), cy(0)) + d(cy(1), cp(1)).

Let ¢, be the geodesic passing through the base points of v and w. Let o, €
[—7,m) be the oriented angles formed by v and w with the geodesic ¢, ,,, respectively.
We define

dy (v, w) := d(cy(0), cw(0)) + | = f].

Proposition 0.1. Let v,w € T'H. We set Dy := d(c,(0), cy(0)), D1 := d(cy(1), cu(1)),
S :=sinh(1) and C := cosh(1). They satisfy
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Proof. We consider the triangle 77 with vertices ¢,(0), ¢,y(0) and ¢,(1) and the triangle
Ty with vertices ¢,,(0), ¢, (0 and ¢, (1). Let 8’ the interior oriented angle of T at ¢, (0).
T has sides of length Dy, 1 and Dj := d(cy(1),¢(0)). Applying the hyperbolic cosine
rule for 77, we have

cosh Dy = C cosh Dy — S sinh Dy cos(m — ), (2)

C' = cosh Dy cosh Dy — sinh Dg sinh Dy cos 3. (3)

By the sine rule between the angles at points ¢,(0) and ¢,(0), we also have
sinh Dy sin 8 = S'sin(r — «). (4)
The angle of T5 at ¢,,(0) is 5 — 4'. By the hyperbolic cosine rule for T5,
cosh Dy = C cosh Dy — S sinh Dy cos(3 — ). (5)
Replacing (2) in (3), we obtain
C = C cosh? Dy + S cosh Dy sinh Dy cos o — sinh Dy sinh Ds cos B,
which can be rewritten as

sinh Dy cos 3’ = C'sinh Dy + S cosh D cos a. (6)



By a trigonometric relation at (5) and then replacing (2), (4) and (6), we have
cosh D1 = C cosh Dy — S'sinh D5 cos 3 cos 8’ — S sinh Dy sin 3 sin 8’
= C? cosh Dy + C'S sinh Dy cos o — C'S sinh Dy cos 8
— 52 cosh Do cos avcos f — S? sin avsin 3.
Elementary trigonometric manipulations lead to the formula of the statement. O

Lemma 0.2. There exists € > 0, K > 0 such that, for all a,8 € R, Dy, D1 € Ry
satisfying Equation (1), if Do + | — 5| < € then

D1 < K(Dg + o — f])

and if Do+ D1 < € then
o — B| < Do + Dy

Proof. We can compare the Taylor polynomials of order two at D1 = Dg=a— =0
of both sides of (1). We have

1+ l;% +0a(D1) = C*(1 + 1;3) — C8Dy(ar — ) sin( 2 5)
— S%(1+ 123)2(1 - ((1_2@2) — 3521)3 cos(a + B3) + 02(Do, a — )
=1+ % <CQ _ SQHCOZM> D% — (CS'sin (Oé—;ﬁ> Do(Oé - ,3)

+ 58%(a— B+ 02( Do, — ).

The polynomial of the right hand side is bounded below by 1+%2(|a— B|—Dy)? and above

by 1+%2(|a—6|+D0)2. Now we choose constants K, K’/ suchthat 1 < K/ < S < (C < K.
There exists € > 0 depending only on K and K’ small enough so higher order terms can
be neglected: if Dy + | — 3] < € then
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and if Do+ D1 <e¢
2 DQ
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The first inequality is equivalent to D1 < K (Dg+|a—/]) and the second one is equivalent
to |a— B < Dy + %Dl, which implies the statement. ]

Proposition 0.3. The distances di and do are equivalent.

Proof. We have D1 < d(c,(0),¢y(1)) + Do + d(cw(0), cy(1)). If Do+ |ao — B] > ¢, then
Dy < Do + g(D0+ la—B|)
In view of Lemma 0.2, we have
dy (v, w) < D0+max(D0+§(D0—|—|a—B|),K(Do—|—|a—ﬁ|)) < max(2—|—§,K—|—1)d2(U,w).
On the other hand, if Dy + Dy > ¢, then |a — ] < 27 < 2?“(Do + Dy). Therefore

2 2
da(v,w) < Doy + max(g, 1)(Do + D1) < max(1 + ?ﬂ-, 2)d;i (v, w).



