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Abstract

Different notions of a distance can be defined on the unit tangent bundle of the
hyperbolic plane. Here we prove by elementary methods that a geometric definition
and a dynamical definition distance are equivalent.

We denote the hyperbolic distance on the hyperbolic plane H by d. For v ∈ T 1H, cv
is the unit speed geodesic with c′v(0) = v. Let v, w ∈ T 1H. We define

d1(v, w) := d(cv(0), cw(0)) + d(cv(1), cw(1)).

Let cv,w be the geodesic passing through the base points of v and w. Let α, β ∈
[−π, π) be the oriented angles formed by v and w with the geodesic cv,w, respectively.
We define

d2(v, w) := d(cv(0), cw(0)) + |α− β|.

Proposition 0.1. Let v, w ∈ T 1H. We set D0 := d(cv(0), cw(0)), D1 := d(cv(1), cw(1)),
S := sinh(1) and C := cosh(1). They satisfy

coshD1 =C2 coshD0 − 2CS sinhD0 sin(
α− β

2
) sin(

α+ β

2
)

− S2 cosh2(
D0

2
) cos(α− β)− S2 sinh2(

D0

2
) cos(α+ β).

(1)

Proof. We consider the triangle T1 with vertices cv(0), cw(0) and cv(1) and the triangle
T2 with vertices cw(0), cv(0 and cw(1). Let β

′ the interior oriented angle of T1 at cw(0).
T1 has sides of length D0, 1 and D2 := d(cv(1), cw(0)). Applying the hyperbolic cosine
rule for T1, we have

coshD2 = C coshD0 − S sinhD0 cos(π − α), (2)

C = coshD0 coshD2 − sinhD0 sinhD2 cosβ
′. (3)

By the sine rule between the angles at points cv(0) and cw(0), we also have

sinhD2 sinβ
′ = S sin(π − α). (4)

The angle of T2 at cw(0) is β − β′. By the hyperbolic cosine rule for T2,

coshD1 = C coshD2 − S sinhD2 cos(β − β′). (5)

Replacing (2) in (3), we obtain

C = C cosh2D0 + S coshD0 sinhD0 cosα− sinhD0 sinhD2 cosβ
′,

which can be rewritten as

sinhD2 cosβ
′ = C sinhD0 + S coshD0 cosα. (6)

1



By a trigonometric relation at (5) and then replacing (2), (4) and (6), we have

coshD1 = C coshD2 − S sinhD2 cosβ cosβ′ − S sinhD2 sinβ sinβ′

= C2 coshD0 + CS sinhD0 cosα− CS sinhD0 cosβ

− S2 coshD0 cosα cosβ − S2 sinα sinβ.

Elementary trigonometric manipulations lead to the formula of the statement.

Lemma 0.2. There exists ε > 0,K > 0 such that, for all α, β ∈ R, D0, D1 ∈ R+

satisfying Equation (1), if D0 + |α− β| < ε then

D1 ≤ K(D0 + |α− β|)

and if D0 +D1 < ε then
|α− β| ≤ D0 +D1.

Proof. We can compare the Taylor polynomials of order two at D1 = D0 = α − β = 0
of both sides of (1). We have

1 +
D2

1

2
+ o2(D1) = C2(1 +

D2
0

2
)− CSD0(α− β) sin(

α+ β

2
)

− S2(1 +
D2

0

8
)2(1− (α− β)2

2
)− 1

4
S2D2

0 cos(α+ β) + o2(D0, α− β)

= 1 +
1

2

(
C2 − S2 1 + cos(α+ β)

2

)
D2

0 − CS sin

(
α+ β

2

)
D0(α− β)

+
1

2
S2(α− β)2 + o2(D0, α− β).

The polynomial of the right hand side is bounded below by 1+S2

2 (|α−β|−D0)
2 and above

by 1+C2

2 (|α−β|+D0)
2. Now we choose constantsK,K ′ such that 1 < K ′ < S < C < K.

There exists ε > 0 depending only on K and K ′ small enough so higher order terms can
be neglected: if D0 + |α− β| < ε then

1 +
D2

1

2
≤ 1 +

K2

2
(|α− β|+D0)

2

and if D0 +D1 < ε

1 +
K ′2

2
(|α− β| −D0)

2 ≤ 1 +
D2

1

2
.

The first inequality is equivalent toD1 ≤ K(D0+|α−β|) and the second one is equivalent
to |α− β| ≤ D0 +

1
K′D1, which implies the statement.

Proposition 0.3. The distances d1 and d2 are equivalent.

Proof. We have D1 ≤ d(cv(0), cv(1)) +D0 + d(cw(0), cw(1)). If D0 + |α− β| ≥ ε, then

D1 ≤ D0 +
2

ε
(D0 + |α− β|)

In view of Lemma 0.2, we have

d1(v, w) ≤ D0+max(D0+
2

ε
(D0+ |α−β|),K(D0+ |α−β|)) ≤ max(2+

2

ε
,K+1)d2(v, w).

On the other hand, if D0 +D1 ≥ ε, then |α− β| ≤ 2π ≤ 2π
ε (D0 +D1). Therefore

d2(v, w) ≤ D0 +max(
2π

ε
, 1)(D0 +D1) ≤ max(1 +

2π

ε
, 2)d1(v, w).
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