Equivalence of the different definitions of the Sasaki distance

Sergi Burniol Clotet

October 16, 2024

Abstract

Different notions of a distance can be defined on the unit tangent bundle of the hyperbolic plane. Here we prove by elementary methods that a geometric definition and a dynamical definition distance are equivalent.

We denote the hyperbolic distance on the hyperbolic plane \mathbb{H} by d. For $v \in T^1\mathbb{H}$, c_v is the unit speed geodesic with $c'_v(0) = v$. Let $v, w \in T^1\mathbb{H}$. We define

$$d_1(v, w) := d(c_v(0), c_w(0)) + d(c_v(1), c_w(1)).$$

Let $c_{v,w}$ be the geodesic passing through the base points of v and w. Let $\alpha, \beta \in [-\pi, \pi)$ be the oriented angles formed by v and w with the geodesic $c_{v,w}$, respectively. We define

$$d_2(v, w) := d(c_v(0), c_w(0)) + |\alpha - \beta|.$$

Proposition 0.1. Let $v, w \in T^1 \mathbb{H}$. We set $D_0 := d(c_v(0), c_w(0)), D_1 := d(c_v(1), c_w(1)), S := \sinh(1)$ and $C := \cosh(1)$. They satisfy

$$\cosh D_1 = C^2 \cosh D_0 - 2CS \sinh D_0 \sin(\frac{\alpha - \beta}{2}) \sin(\frac{\alpha + \beta}{2}) - S^2 \cosh^2(\frac{D_0}{2}) \cos(\alpha - \beta) - S^2 \sinh^2(\frac{D_0}{2}) \cos(\alpha + \beta).$$
(1)

Proof. We consider the triangle T_1 with vertices $c_v(0), c_w(0)$ and $c_v(1)$ and the triangle T_2 with vertices $c_w(0), c_v(0 \text{ and } c_w(1))$. Let β' the interior oriented angle of T_1 at $c_w(0)$. T_1 has sides of length D_0 , 1 and $D_2 := d(c_v(1), c_w(0))$. Applying the hyperbolic cosine rule for T_1 , we have

$$\cosh D_2 = C \cosh D_0 - S \sinh D_0 \cos(\pi - \alpha), \tag{2}$$

$$C = \cosh D_0 \cosh D_2 - \sinh D_0 \sinh D_2 \cos \beta'. \tag{3}$$

By the sine rule between the angles at points $c_v(0)$ and $c_w(0)$, we also have

$$\sinh D_2 \sin \beta' = S \sin(\pi - \alpha). \tag{4}$$

The angle of T_2 at $c_w(0)$ is $\beta - \beta'$. By the hyperbolic cosine rule for T_2 ,

$$\cosh D_1 = C \cosh D_2 - S \sinh D_2 \cos(\beta - \beta'). \tag{5}$$

Replacing (2) in (3), we obtain

$$C = C \cosh^2 D_0 + S \cosh D_0 \sinh D_0 \cos \alpha - \sinh D_0 \sinh D_2 \cos \beta',$$

which can be rewritten as

$$\sinh D_2 \cos \beta' = C \sinh D_0 + S \cosh D_0 \cos \alpha. \tag{6}$$

By a trigonometric relation at (5) and then replacing (2), (4) and (6), we have

$$\cosh D_1 = C \cosh D_2 - S \sinh D_2 \cos \beta \cos \beta' - S \sinh D_2 \sin \beta \sin \beta'$$
$$= C^2 \cosh D_0 + CS \sinh D_0 \cos \alpha - CS \sinh D_0 \cos \beta$$
$$- S^2 \cosh D_0 \cos \alpha \cos \beta - S^2 \sin \alpha \sin \beta.$$

Elementary trigonometric manipulations lead to the formula of the statement.

Lemma 0.2. There exists $\varepsilon > 0, K > 0$ such that, for all $\alpha, \beta \in \mathbb{R}$, $D_0, D_1 \in \mathbb{R}_+$ satisfying Equation (1), if $D_0 + |\alpha - \beta| < \varepsilon$ then

$$D_1 \le K(D_0 + |\alpha - \beta|)$$

and if $D_0 + D_1 < \varepsilon$ then

$$|\alpha - \beta| \le D_0 + D_1.$$

Proof. We can compare the Taylor polynomials of order two at $D_1 = D_0 = \alpha - \beta = 0$ of both sides of (1). We have

$$\begin{split} 1 + \frac{D_1^2}{2} + o_2(D_1) &= C^2 (1 + \frac{D_0^2}{2}) - CSD_0(\alpha - \beta) \sin(\frac{\alpha + \beta}{2}) \\ &- S^2 (1 + \frac{D_0^2}{8})^2 (1 - \frac{(\alpha - \beta)^2}{2}) - \frac{1}{4} S^2 D_0^2 \cos(\alpha + \beta) + o_2(D_0, \alpha - \beta) \\ &= 1 + \frac{1}{2} \left(C^2 - S^2 \frac{1 + \cos(\alpha + \beta)}{2} \right) D_0^2 - CS \sin\left(\frac{\alpha + \beta}{2}\right) D_0(\alpha - \beta) \\ &+ \frac{1}{2} S^2 (\alpha - \beta)^2 + o_2(D_0, \alpha - \beta). \end{split}$$

The polynomial of the right hand side is bounded below by $1 + \frac{S^2}{2}(|\alpha - \beta| - D_0)^2$ and above by $1 + \frac{C^2}{2}(|\alpha - \beta| + D_0)^2$. Now we choose constants K, K' such that 1 < K' < S < C < K. There exists $\varepsilon > 0$ depending only on K and K' small enough so higher order terms can be neglected: if $D_0 + |\alpha - \beta| < \varepsilon$ then

$$1 + \frac{D_1^2}{2} \le 1 + \frac{K^2}{2} (|\alpha - \beta| + D_0)^2$$

and if $D_0 + D_1 < \varepsilon$

$$1 + \frac{K^{2}}{2}(|\alpha - \beta| - D_0)^2 \le 1 + \frac{D_1^2}{2}.$$

The first inequality is equivalent to $D_1 \leq K(D_0 + |\alpha - \beta|)$ and the second one is equivalent to $|\alpha - \beta| \leq D_0 + \frac{1}{K'}D_1$, which implies the statement.

Proposition 0.3. The distances d_1 and d_2 are equivalent.

Proof. We have $D_1 \leq d(c_v(0), c_v(1)) + D_0 + d(c_w(0), c_w(1))$. If $D_0 + |\alpha - \beta| \geq \varepsilon$, then $D_1 \leq D_0 + \frac{2}{\varepsilon} (D_0 + |\alpha - \beta|)$

In view of Lemma 0.2, we have

 $d_1(v,w) \leq D_0 + \max(D_0 + \frac{2}{\varepsilon}(D_0 + |\alpha - \beta|), K(D_0 + |\alpha - \beta|)) \leq \max(2 + \frac{2}{\varepsilon}, K + 1)d_2(v,w).$

On the other hand, if $D_0 + D_1 \ge \varepsilon$, then $|\alpha - \beta| \le 2\pi \le \frac{2\pi}{\varepsilon}(D_0 + D_1)$. Therefore

$$d_2(v,w) \le D_0 + \max(\frac{2\pi}{\varepsilon}, 1)(D_0 + D_1) \le \max(1 + \frac{2\pi}{\varepsilon}, 2)d_1(v,w).$$