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Chapter 1

Introduction

The object of this master’s thesis is the study of dynamical properties of the geodesic
flow in negative curvature. This flow acts on the tangent bundle of a Riemannian
manifold by moving tangent vectors to a geodesic a certain amount of time along the
geodesic itself. The geometry of negative curvature provides some interesting dynamical
properties to the flow, for example, the ergodic property. It is a classical problem in the
theory of dynamical systems.

One of the first results is due to E. Hopf, who proved the ergodicity of the geodesic
flow on manifolds of curvature −1 with finite volume [Hop36]. Later it was also proved
that the geodesic flow in this context is mixing. D. V. Anosov proved a generalization
of the ergodicity of the geodesic flow to negative curvature [Ano67]. We will study both
situations: the case of curvature −1 for surfaces and the case of variable curvature and
any dimension.

The text is divided in four chapters, the first of them being this introduction. The
second is also an introductory chapter to the objects that we will study, manifolds of
negative curvature. We put special emphasis to the hyperbolic plane and we describe the
surfaces of curvature −1. In Chapter 3, we introduce the geodesic flow and another kind
of flow, called horocyclic, on the hyperbolic plane and we study their dynamics. The
proof of their dynamical properties is based on the conjugation with an algebraic model,
that is easier to study. In the last chapter, we show the ergodicity in variable curvature.
We define some tools and state some results of geometry in negative curvature that
is needed and then we proceed to give evidence of the ergodicity, going through some
rather technical aspects of geodesic flow.

All the results here presented were already known, although it does contain some
own computations. The main job done on this master’s thesis consisted in learning
all the new concepts and gathering results from different sources to make a coherent
explanation of the subject. The ergodicity in negative curvature ultimately depends
on some facts concerning spaces of negative curvature. Some of them are out of topic,
but would be an excellent way to make our understanding better beyond this master’s
thesis.

Geodesic and horocyclic flow are known to satisfy stronger dynamical properties
than the ones we will see. The domain that studies these flows has still a lot of open
questions and some properties admit generalizations in some sense. For example, in the
case of nonpositive curvature, it is not clear yet what happens with a property called
equidistribution.
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Chapter 2

Manifolds of negative curvature

The goal of this chapter is to give the necessary background concerning the objects we
will study. We present well-known results of Riemannian geometry in negative curvature
(Section 2.1), putting particular attention to the case of constant curvature, where we
are able to describe the complete Riemannian manifolds (Section 2.2). Section 2.3 is
dedicated to the hyperbolic plane and its isometries. We introduce the discrete groups
of isometries, which play an important role in the next chapter.

We do not present the proof of general results in Riemannian geometry, they can be
found in [dC92]. In the study of isometries of hyperbolic plane, [Dal11] and [Kat92] are
good references, from which we have taken inspiration.

2.1 The theorem of Hadamard

The sectional curvature K(x,Π) of a Riemannian manifold Mn, n ≥ 2 is defined at each
point x ∈M , for each 2-dimensional subspace Π ⊂ TxM . In this text, we are interested
in manifolds with negative curvature, that is to say, negative at every point and every
plane. Here, we present a result on manifolds of nonpositive curvature.

We say that M is (geodesically) complete if the geodesics are defined for all time. We
assume the reader has notions on complete manifolds and the Theorem of Hopf-Rinow,
which gives equivalent conditions to the fact of being complete and important properties
of the geodesics. As a consequence, we deduce that every compact Riemannian manifold
is complete.

This short section finishes with the statement of the theorem, which is proved using
Hopf-Rinow.

Theorem 1. (Hadamard). Let Mn be a complete Riemannian manifold of nonpositive
sectional curvature. Then, for all x in M , the map expx : TxM →M is a covering map.
In particular, the universal cover of M is diffeomorphic to Rn.

2.2 Manifolds of constant curvature

Now we restrict our attention to spaces of constant curvature. First of all, we remark
that, in a manifold M with a Riemannian metric g, a rescaling of the metric h = λg, λ >
0 changes the sectional curvature as Kh = 1

λKg. Thanks to these rescalings we can focus
to what happens in curvatures −1, 0 and 1. Although we are only interested in the first
case, we will explain the others for sake of completeness.
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6 CHAPTER 2. MANIFOLDS OF NEGATIVE CURVATURE

We introduce a well known space for each of these curvatures. Consider the sub-
manifold Hn of Rn equipped with the metric g−1, where

Hn = {(x1, . . . , xn) ∈ Rn |xn > 0} , g−1 =
1

x2
n

(
dx2

1 + · · ·+ dx2
n

)
.

With some computations, it is easy to see that its sectional curvature is constant −1.
With curvature 0, we take Rn with the Euclidean metric g0 and with curvature 1, the
sphere Sn with the inherited metric g1 from Rn+1. The geodesic trajectories of the two
last spaces are easy to find, they are straight lines in the euclidean space and great
circles in the sphere.

Proposition 1. The geodesic trajectories of (Hn, g−1) are the straight lines perpendicu-
lar to the hyperplane {xn = 0} and the circles with center in {xn = 0} and perpendicular
to it.

Figure 2.1: Two geodesics on the hyperbolic plane.

In Figure 2.1 we see a vertical and a half-circle geodesic on the hyperbolic plane.
We conclude that all three spaces are simply connected, geodesically complete and have
constant curvature. The following result is what makes them particularly interesting.

Theorem 2. Let Mn be a complete Riemannian manifold of constant sectional curvature
K = −1, 0, 1. Then, the universal cover M̃ of M , with the lifted metric, is isometric to:

(i) (Hn, g−1) if K = −1,

(ii) (Rn, g0) if K = 0,

(iii) (Sn, g1) if K = 1.

We can go further in our attempt to understand all the spaces of constant curvature.

Definition 1. Let M be a Riemannian manifold and Γ a subgroup of isometries of M .
We say that Γ acts totally discontinuously if for all x in M there is a neighborhood U
of x such that γ(U) ∩ U = ∅ for all γ in Γ \ {id}.

We say that Γ acts properly discontinuously if for all x in M there is a neighborhood
U of x such that γ(U) ∩ U = ∅ for all but finitely many γ in Γ.

It is clear that the first property implies the second one, but it is convenient to
introduce both of them. They have the goal to provide nice properties on the quotient
of the set M under the action by evaluation of Γ.



2.3. SURFACES OF CURVATURE −1 7

In an introductory course in Riemannan geometry, it is seen that, given a Riemannian
manifold M and a group Γ of isometries acting totally discontinuously, we can put a
natural structure of Riemannian manifold on the set

M�Γ = {Γx := {γ(x) | γ ∈ Γ} |x ∈M} .

Since M and M/Γ are locally isometric, if M has constant curvature, M/Γ will also
have constant curvature with the same value. By taking M = Rn, Hn, Sn and a suitable
group of isometries Γ, we can generate lots of manifolds of constant curvature. In fact,
all complete manifolds of constant curvature have this form.

Proposition 2. Let Mn be a complete Riemannian manifold of constant sectional cur-
vature K = −1, 0, 1. Then, M is isometric to the quotient M̃/Γ of the universal cover
M̃ of M , with the lifted metric, by a subgroup of isometries of M̃ that acts totally
discontinuously.

The proposition reduces the problem of finding manifolds with curvature −1 to the
study of subgroups of isometries of Hn that act totally discontinuously. In Section 2.3,
we will describe these groups in dimension 2 and, in consequence, the surfaces with
curvature −1.

In fact, we will study properly discontinuous subgroups, because all the work that
we will do in Chapter 3 is valid for this kind of subgroups. In general, the quotient M/Γ
by a properly discontinuous group is no longer a manifold, but it is an example of a
more general object called an orbifold.

2.3 Surfaces of curvature −1

In this section, we take a close look at the geometry of surfaces with curvature −1.
To simplify notations, the hyperbolic half-plane will be simply denoted by H, with
coordinates (x, y), and the metric given by g = 1

y2
(dx2 + dy2). We also identify H ≡

{z ∈ C | Im z > 0} via z = x+ iy ≡ (x, y).

Homographies are maps ϕ from C ∪ {∞} to itself of the form

ϕ(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0. (2.1)

They have the property to send the set of lines and circles to itself. Using homographies,
we can smoothly transform the upper half-plane H to other domains in C and pushing
forward the metric of H we obtain an isometric space. This means that there are
many other models for hyperbolic geometry. One of them is the Poincaré disk D =
{z ∈ C | |z| < 1} with the metric given by

4

(1− |z|2)2

(
dx2 + dy2

)
.

The transformation between them is

Ψ : H −→ D
z 7−→ iz+1

z+i

.

This model is useful because of its symmetry, certain geometric reasonings are easier
to visualize. Recall that geodesics in the half-plane are vertical lines and semicircles with
center on the real axis (thus, perpendicular to it). Since the previous transformation is
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a homography that sends i to 0, geodesics in the disk are circles perpendicular to the
border of the disk and lines passing through 0.

Now, we study the group of isometries Isom(H) of the hyperbolic half-plane. Con-
sider a homography ϕ of the form (2.1) with real coefficients a, b, c, d. We obtain by
computation

Imϕ(z) =
Im z

|cz + d|2
, dϕ =

1

(cz + d)2
dz.

The first implies that ϕ is well defined as a bijective map H→ H. The tangent map of
such an homography is dzϕ(v) = ϕ′(z) · v, where z is in H and v = vx

∂
∂x + vy

∂
∂y ∈ Tz H

is identified with the complex number vx + ivy. The determinant of the tangent map is

|ϕ′(z)|2. It is satisfied

g(dzϕ(v), dzϕ(v)) =
|dϕ(v)|2

Im(ϕ(z))2
=
|dz|2

Im(z)2
= g(v, v),

so ϕ turns to an orientation-preserving isometry.

This type of homographies are identified with PSL2(R) by a group isomorphism(
a b
c d

)
7−→

(
z 7→ az + b

cz + d

)
.

We will refer to them as homographies associated to PSL2(R) and when it is clear from
the context we will directly write PSL2(R) for the subgroup of homographies.

Proposition 3. All the orientation-preserving isometries of H are homographies asso-
ciated to PSL2(R).

Proof. Consider H ⊂ R2 equipped with the standard metric 〈 · , · 〉. A diffeomorphism
φ : H→ H is conformal if it preserves the orientation and there exits a function f : H→
(0,+∞) such that 〈dzφ(v), dzφ(v)〉 = f(z)〈v, v〉. We observe that orientation-preserving
isometries with the metric g are conformal. Let us prove that conformal maps of H are
homographies associated to PSL2(R).

We will use the fact that conformal maps between two open sets are holomorphic
diffeomorphisms. In addition, holomorphic diffeomorphisms are automatically biholo-
morphisms.

Since the transformation Ψ is holomorphic, conformal maps of the disk are Conf(D) =
Ψ Conf(H)Ψ−1. Therefore, proving that Conf(H) = PSL2(R) is equivalent to proving
that Conf(D) = Ψ PSL2(R)Ψ−1. It can be seen that the set equality

Ψ PSL2(R)Ψ−1 =
{
hα,β

∣∣∣α, β ∈ C, |α|2 − |β|2 = 1
}

is held, where

hα,β(z) =
αz + β

β̄z + ᾱ
.

So, to finish the proof it is enough to show that every biholomorphism of the disk 0 is
of the form hα,β.

This is an application of Schwarz Lemma. Suppose the map φ : D → D is biholo-
morphic. There exist hα,β which sends φ(0) to 0. By the Schwarz Lemma, since hα,βφ
fixes 0, we obtain

|hα,βφ(z)| ≤ |z| and
∣∣(hα,βφ)−1(z)

∣∣ ≤ |z| , ∀z ∈ D,

so |hα,βφ(z)| = |z|. Again by Schwarz Lemma, hα,βφ(z) = az for some complex number
a ∈ C, |a| = 1, which implies that the map φ is as wanted.
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It is clear that orientation-preserving isometries of PSL2(R) is a subgroup of index
2 of Isom(H), this makes them the main ingredient in the study of isometries of H and,
thus, of surfaces with curvature −1.

A discrete subgroup Γ of PSL2(R) (with the topology of a quotient of a subspace of
the space of matrices) is called a Fuchsian group. We will show that the subgroups of
PSL2(R) acting properly discontinuously on H are precisely the discrete subgroups. We
start with some alternative characterizations of properly discontinuous actions.

Proposition 4. Let M be a Riemannian manifold and Γ a subgroup of isometries of
M . The following are equivalent:

(i) The subgroup Γ acts properly discontinuously.

(ii) For all x in M , for all compact subset K of M , the set

{γ ∈ Γ | γ(x) ∈ K}

is finite.

(iii) For all x in M , the set Γx is discrete and the stabilizer at the point x is finite.

Proof. (ii) =⇒ (iii). Take a compact neighborhood K of x. The stabilizer at x is the set
{γ ∈ Γ | γ(x) = x}, which is included in the set {γ ∈ Γ | γ(x) ∈ K}, and it is clear that it
has to be finite. Moreover, the set Γx ∩K is included in the set {γ ∈ Γ | γ(x) ∈ K} (x),
so it is finite. Then, there is a neighborhood of x which does not contain the points of
Gx different from x.

(iii) =⇒ (ii). Let K be a compact set. The intersection Γx∩K is finite. The cardinal
of the set {γ ∈ Γ | γ(x) ∈ K} is the sum of the cardinals of the stabilizers at y over all
y Γx ∩K, so it is finite.

(iii) =⇒ (i). Let K be a compact set. The intersection Γx ∩ K is finite. Then,
there exists a ball B(x, ε) centered at x of radius ε which does not contain any of the
points in Γx different from x. It follows that γ(B(x, ε/2)) ∩ B(x, ε/2) 6= ∅ implies that
the isometry γ is in the stabilizer at the point x, but this can only happen for a finite
amount of γ in Γ.

(i) =⇒ (iii). Let x in M . For each neighborhood V of x, we have

{γ ∈ Γ | γ(x) = x} ⊂ {γ ∈ Γ | γ(V ) ∩ V 6= ∅} .

and by hypothesis of properly discontinuity we can choose one neighborhood V such
that the second set is finite, so the stabilizer at x is finite as well.

For the same choice of V , we look at the set Γx ∩ V . If some point y is in Γx ∩ V ,
we can write y = γ(x) for some homography γ in Γ, and it satisfies γ(V )∩V 6= ∅. Since
there are only finitely many γ that satisfy that, the set Γx ∩ V is finite, so we can find
a smaller neighborhood of x which contains no point of Γx other than x.

To prove the equivalence between discrete and properly discontinuous we need the
next lemma.

Lemma 1. Let z ∈ H and let K be a compact subset of H. Then, the set

{γ ∈ PSL2(R) | γ(z) ∈ K}

is compact.
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The proof of this lemma can be found in [Kat92]. With its help we prove the following
result.

Theorem 3. A subgroup Γ of PSL2(R) is discrete if and only if it acts properly discon-
tinuously on H.

Proof. Suppose the subgroup Γ is discrete. We will use that Γ is closed, it is a fact from
general topology that a discrete subgroup of a Hausdorff topological group is closed. For
all x in H, for all compact set K, the set

{γ ∈ Γ | γ(x) ∈ K} = {γ ∈ PSL2(R) | γ(x) ∈ K} ∩ Γ

is discrete and compact, because it is the intersection of a compact set (by Lemma 1)
with a closed set. Then, it has to be finite, so the action of Γ is properly discontinuous.

Conversely, suppose that Γ is properly discontinuous. Let us suppose that Γ is not
discrete and obtain a contradiction. There exist γ in Γ and distinct elements γn in Γ,
for all n in N, such that lim γn = γ. Let z in H. Then, the sequence γ−1γn(z) → z
converges. In consequence, for any neighborhood V of z, there exists n0 in N such that
γ−1γn(V ) ∩ V 6= ∅ if n ≥ n0. This contradicts that Γ is properly discontinuous.



Chapter 3

Geodesic and horocyclic flows in
curvature −1

In this chapter, we will introduce the geodesic flow and the horocyclic flows for surfaces
of curvature −1, which have been an important object of study in classical dynamical
systems. In Section 3.1 we will present the two flows in a very algebraic context, where
they act by matrix multiplications. Thanks to some explicit relations between them it
will be easy to prove the dynamical properties of these flows, ergodicity and mixing, on
convenient spaces. In Section 3.2 we define the flows geometrically on the hyperbolic
plane and we establish the equivalence with the first model. In Chapter 4 we will deal
with a more general situation and we will use a different method to study the dynamics.
However, this other method was first applied in curvature −1, and we expect that the
connection between both cases will be clear thanks to the notions here explained. The
chapter is based on the notes from Y. Coudène [Cou14].

3.1 The algebraic model

3.1.1 Dynamics on PSL2(R)

The space where we will work is PSL2(R) := SL2(R)/{±Id}, where

SL2(R) = {A ∈ M2(R) | detA = 1}.

This set has a structure of differential manifold as a submanifold of the set of matrices
and it can be easily described with two coordinate charts, defined on the open sets

U1 =

{(
a b
c d

)
∈ PSL2(R)

∣∣∣∣ d > 0

}
,

U2 =

{(
a b
c d

)
∈ PSL2(R)

∣∣∣∣ c > 0

}
,

which cover the whole manifold PSL2(R). Explicitly, the charts are

ψ1 : U1 −→ R×R× (0,+∞)(
a b
c d

)
7−→ (b, c, d)

,

ψ2 : U2 −→ R× (0,+∞)× R(
a b
c d

)
7−→ (a, c, d)

.

11



12 CHAPTER 3. FLOWS IN CURVATURE −1

Let us define a very special measure µ on PSL2(R), called the Liouville measure.
The measure is defined from its densities on each chart:

dµ =
1

d
dbdcdd on U1 and dµ =

1

c
dadcdd on U2.

A little computation shows that the Jacobian of the change of coordinates from U1 to
U2 is |c/d|, so the two definitions of dµ coincide on U1∩U2 and we get a globally defined
measure.

Theorem 4. The measure µ is invariant by left and right multiplication on PSL2(R).

Proof. The measure µ is invariant by a differentiable function f from PSL2(R) to itself
if µ(U) = µ(f−1(U)) for all open set U , or equivalently, the equality of differential forms
f∗dµ = dµ is satisfied. Suppose that f is a left multiplication, i. e. there is g in PSL2(R)

such that f(A) = gA for all A in PSL2(R). Writing g =
(
α β
γ δ

)
, we have

f

(
a b
c d

)
=

(
αa+ βc αb+ βd
γa+ δc γb+ δd

)
,

which in coordinates of U1 is

f(b, c, d) = (αb+ βd, γ
1 + bc

d
+ δc, γb+ δd) = (b′, c′, d′).

Then, the Jacobian is

j =

∣∣∣∣∣∣det

α ∗ β

0 γ bd + δ 0
γ ∗ δ

∣∣∣∣∣∣ =

∣∣∣∣(αδ − βγ)
γb+ δd

d

∣∣∣∣ =

∣∣∣∣d′d
∣∣∣∣

and from db′ dc′ dd′ = j dbdcdd we obtain

f∗dµ =
db′ dc′ dd′

d′
=

dbdc dd

d
= dµ.

The computations done so far are sufficient since PSL2(R) \ U1 has zero measure. The
proof for right multiplication goes similarly.

The geodesic flow {gt}t∈R is a flow on PSL2(R) defined by

gt(M) = M

(
et/2 0

0 e−t/2

)
.

There are also the contracting horocyclic flow {h+
s }s∈R and the expanding horocyclic

flow {h−u }u∈R defined by

h+
s (M) = M

(
1 s
0 1

)
, h−u (M) = M

(
1 0
u 1

)
.

From Theorem 4, µ is invariant by the geodesic (and horocyclic) flow in the sense that
it is invariant by gt (or h±t ) for each t in R.

These flows satisfy some relations between them that can be showed by straight
computation, but they will be crucial to show the dynamical properties of the flows.
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Proposition 5. The geodesic and horocyclic flows satisfy:

gt ◦ h+
s = h+

se−t ◦ gt, s, t ∈ R, (3.1)

gt ◦ h−u = h−uet ◦ gt, t, u ∈ R, (3.2)

h+
s−1−1
ε

◦ h−ε ◦ h+
s−1
ε

◦ h−−εs−1 = g2 log s, s, ε > 0. (3.3)

Moreover, they generate the action of PSL2(R) by right multiplication, i. e. if A ∈
PSL2(R), the right multiplication by A, RA, is

RA =

{
h−c/d ◦ g−2 log d ◦ h+

b/d if d > 0,

h−c+a/b ◦ h
+
b ◦ h

−
−1/b if d = 0,

where A =

(
a b
c d

)
.

3.1.2 Quotients of finite volume

The space PSL2(R) acts as the cover of smaller spaces that interest us. In the following
we formalize this notion. Let Γ be a subgroup of PSL2(R) which is discrete as a subset,
acting on PSL2(R) by left multiplication. We will refer to such a Γ as a discrete subgroup.
Denote by X = Γ\PSL2(R) the group quotient and π the projection to the quotient.

Definition 2. We say that a discrete subgroup Γ has finite covolume or that X has
finite volume if there exists a Borel subset D of PSL2(R) that satisfies:

(i) µ(D) < +∞, µ(∂D) = 0,

(ii) PSL2(R) =
∐
γ∈Γ γD.

Suppose the group Γ has finite covolume. The Liouville measure on PSL2(R) induces
a measure µ on X, defined by

µ(A) = µ(π−1(A) ∩D).

It is possible that more than one set D satisfies the conditions in the definition. Never-
theless, the measure does not depend on the choice of D.

Right multiplications on PSL2(R) commute with left ones, so the flows gt, h
+
s , h

−
u

induce flows on X, because it is a left quotient. We keep the same names and notation
for these new flows. To be consistent we will use µ for the measure induced on X.
Because of the left and right multiplication invariance of µ on PSL2(R), the geodesic
and horocyclic flows on X are µ-invariant.

3.1.3 Dynamical properties

It is time to introduce the two dynamical properties that will be studied. We define
them for a general (finite) measure preserving flow (X,A, µ, {Φt}t∈R), where (X,A, µ)
is a finite measure space and Φt a measurable flow on X that is µ-invariant. A function
f ∈ L2(x, µ) is Φt-invariant if f ◦ Φt = f a.e. for all t ∈ R.

Definition 3. Let (X,A, µ, {Φt}t∈R) be a measure preserving flow. We say that Φt is
ergodic with respect to µ if every invariant function f ∈ L2(X,µ) is constant a.e.
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There are several equivalent definitions of ergodicity, for instance, we can say that a
flow is ergodic if all invariant sets are either negligible or of negligible complement. A
measurable set A is invariant if µ(Φ−t(A)4A) = 0 for every t ∈ R1.

Definition 4. Let (X,A, µ, {Φt}t∈R) be a measure preserving flow. We say that Φt is
mixing with respect to µ if for all f, g ∈ L2(X,µ)∫

X
f ◦ Φt · g dµ −−−−→

t→+∞

1

µ(X)

∫
X
f dµ

∫
X
g dµ.

Recall the weak convergence in L2(X,µ): a sequence {fn}n∈N in L2(X,µ) weakly
converges to f ∈ L2(X,µ) if for all g ∈ L2(X,µ)∫

X
fng dµ −−−−−→

n→+∞

∫
X
fg dµ.

We write fn ⇀ f in this case. We write f ◦ Φt ⇀ h if for every sequence tn → +∞, we
have f ◦ Φtn ⇀ h. All the following formulations are equivalent ways to say that Φt is
mixing:

• ∀f ∈ L2(X,µ), f ◦ Φt ⇀ 1
µ(X)

∫
X f dµ,

• ∀A,B ∈ A, µ(Φ−t(A) ∩B)→ µ(A)µ(B)/µ(X) when t→ +∞,

• ∀f ∈ L2(X,µ) such that
∫
fdµ = 0, f ◦ Φt ⇀ 0,

• ∀f ∈ L2(X,µ) such that
∫
fdµ = 0, all accumulations points of {f ◦ Φt}t≥0 are

zero.

All equivalencies are easy to see, including the last one if we use the fact that the unit
ball of L2(X,µ) is sequentially compact in the weak convergence.

It is worth knowing that mixing implies ergodicity. Indeed, suppose A is an invariant
set. Then µ(Φt(A) ∩ A) = µ(A). If Φt is mixing, we obtain µ(A) = µ(A)2/µ(X), so
either µ(A) = 0 or µ(A) = µ(X). Therefore, Φt is ergodic.

The goal of the rest of this section is to prove the following result.

Theorem 5. Let Γ be a discrete subgroup of PSL2(R) of finite covolume and let X =
Γ\PSL2(R). The geodesic flow gt on X is mixing and horocyclic flows h+

s , h
−
u are ergodic

with respect to the Liouville measure µ.

Until the end of the section, X will denote the quotient Γ\PSL2(R), where Γ is a
discrete subgroup of PSL2(R) of finite covolume. We begin with a property of X that
will be needed later.

Proposition 6. For all function f in L2(X,µ), we have

f ◦ gt
L2

−−→
t→0

f, (3.4)

and similarly for horocyclic flows.

1A4B = (A \B) ∪ (B \A)
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Proof. Let D be a domain for Γ as in the definitions of subgroup of finite covolume.
Consider the lift f̃ of f in L2(X,µ) to L2(D,µ). Suppose f̃ is bounded Lipschitz. Then,
by dominated convergence we have

lim
t→0

∫
D

∣∣∣f̃ ◦ gt − f̃ ∣∣∣2 dµ =

∫
D

lim
t→0

∣∣∣f̃ ◦ gt − f̃ ∣∣∣2 dµ = 0,

because f̃ ◦ gt(x) → f̃(x) for all x in the interior of D by continuity and µ(∂D) = 0.
Then, we deduce the convergence for f .

Since D has finite measure, bounded Lipschitz functions are dense in L2(D,µ). Using
approximations we can translate the result to any functions f̃ and f .

The next two propositions are based on the commuting relations of geodesic and
horocyclic flows (Proposition 5).

Proposition 7. Let f be a function in L2(X,µ) . If tn is a sequence of real numbers
such that tn → +∞ and f ◦ gtn ⇀ f̄ ∈ L2(X,µ), then the function f̄ is invariant by the
flow h+

s .

If tn is a sequence of real numbers such that tn → −∞ and f ◦ gtn ⇀ f̄ ∈ L2(X,µ),
then the function f̄ is invariant by the flow h−u .

In particular, every gt-invariant function is invariant by h+
s and h−u .

Proof. We use Equation 3.1 and we apply that the measure is gt invariant and the
previous proposition to compute the L2-norm∥∥f ◦ gt ◦ h+

s − f ◦ gt
∥∥ =

∥∥f ◦ h+
se−t ◦ gt − f ◦ gt

∥∥ =
∥∥f ◦ h+

se−t − f
∥∥ t→+∞−−−−→ 0.

Hence, the sequence f ◦ gt ◦ h+
s − f ◦ gt converges weakly to 0. On the other hand, it

also converges to f̄ ◦h+
s − f̄ . We deduce the first statement by unicity of the limit. The

second is done analogously using Equation 3.2. If f is gt-invariant, then f̄ = f for any
sequence tn and we deduce the last statement.

Proposition 8. Every h+
s -invariant function f in L2(X,µ) is invariant by the geodesic

flow gt. Every h−u -invariant function f in L2(X,µ) is invariant by the geodesic flow gt.

Proof. For any ε, s > 0, we have by Equation 3.3

‖f ◦ g2 log s − f‖ =

∥∥∥∥f ◦ h+
s−1−1
ε

◦ h−ε ◦ h+
s−1
ε

◦ h−−εs−1 − f
∥∥∥∥ =

∥∥∥∥f ◦ h−ε ◦ h+
s−1
ε

◦ h−−εs−1 − f ◦ h+
s−1
ε

◦ h−−εs−1 + f ◦ h−−εs−1 − f
∥∥∥∥ ≤∥∥f ◦ h−ε − f∥∥+

∥∥∥f ◦ h−−εs−1 − f
∥∥∥ ε→0−−−→ 0.

A similar computation shows the second statement.

We can now finish the section with the proof of Theorem 5 about the dynamical
properties of geodesic and horocyclic flows.

Proof of Theorem 5. For the mixing property of the geodesic flow we will see that, for
every square integrable function f with zero integral, all the accumulation points of
{f ◦ gt}t≥0 are zero a.e. We already know by Proposition 7 that these accumulation
points are h+

s -invariant.
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Let us show that each h+
s -invariant function f̄ is zero a.e. This will prove the mixing

of geodesic flow gt and the ergodicity of the horocyclic flow h+
s .

By the previous propositions f̄ is also gt and h−u -invariant. Since the three flows
generate the action of PSL2(R) by right multiplication, we deduce that

∀A ∈ PSL2(R), µ-a.e. x ∈ X, f̄(xA) = f̄(x).

Applying Fubini’s theorem we get

µ-a.e. x ∈ X, µ-a.e. A ∈ PSL2(R), f̄(xA) = f̄(x).

There exists at least one point x0 in X such that for µ-almost every A in PSL2(R), we
have f̄(x0A) = f̄(x0). Hence we deduce that f̄ is constant almost everywhere. Since its
integral is zero, we conclude that f̄ is zero almost everywhere.

The proof of the ergodicity for h−u is done analogously.

3.2 Geodesic and horocyclic flow on the hyperbolic plane

3.2.1 Unitary tangent bundle and geodesic flow

Recall that geodesic trajectories in the half-planeH are vertical lines and half-circles with
center on the real line. Geodesics themselves are parametrizations of these trajectories
by a constant multiple of the arc length parameter. The unitary tangent bundle T 1H
is the set of vectors of T H with hyperbolic length 1. For each v in T 1H, let γv the
geodesic satisfying γv(0) = π(v) and γ′v(0) = v, where π : T 1H → H is the projection.
In other words, γv is the geodesic trajectory with direction v parametrized by the arc
length, say t. For all v in T 1H, the geodesic γv(t) is defined for all t in R, because both
ends of geodesic trajectories have infinite hyperbolic length, which is the reason why the
hyperbolic plane is complete. For the same reason, given any two distinct points in the
half-plane, there is a unique geodesic which joins them.

The geodesic flow {gt}t∈R on the unitary tangent bundle is the flow gt : T 1H→ T 1H
such that, for all v in T 1H,

gt(v) = γ′v(t).

The study of the dynamics of this flow, which has an indubitable geometric interest,
goes through the study of its asymptotic behavior. To do this, first we need to look at
the space T 1H and the action of homographies.

Firstly, we need to introduce a distance on the unitary tangent bundle. We can do
this as follows: for two unit vectors v1, v2 in T 1H with basepoints π(v1) = z1, π(v2) = z2,
let γ be the geodesic joining the two points and define a distance

d(v1, v2) = d(z1, z2) + |θ1 − θ2| ,

where d(x1, x2) is the hyperbolic distance and θ1, θ2 are the angles between v1, v2 and the
direction of γ at points z1 and z2, respectively, as we can see in Figure 3.1. In abstract
terms, this distance has a term measuring the distance between their basepoints and
a term measuring the angle between vectors, after moving them to the same tangent
plane by parallel transport on the geodesic which joins them. Notice that the hyperbolic
angles and euclidean angles are the same because the metrics are conformal.

From a more geometrical viewpoint, we can put a natural Riemannian metric on
T 1H, called the Sasaki metric. We will define it in general in Chapter 4. The distance
obtained from this metric can be seen to be equivalent to the given one.
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Figure 3.1: Vectors v1 and v2 in the hyperbolic plane.

Recall from Section 2.3 that orientation-preserving isometries of H are homographies
associated to PSL2(R). The action of these homographies on H can be extended on T 1H
by

PSL2(R) × T 1H −→ T 1H
ϕ , v 7−→ dπ(v)ϕ(v) = ϕ′(π(v)) · v,

where both points and vectors are thought as complex numbers. From now on, by
writing ϕ(v) we will denote the action of ϕ ∈ PSL2(R) on v ∈ T 1H.

The action of PSL2(R) on T 1H has better properties than on H. This action is
simply transitive, i.e. given any two vectors on T 1H there exists a unique homography
in PSL2(R) sending the first vector to the second.

Proposition 9. The action of PSL2(R) on T 1H is simply transitive.

Proof. Let v0 = ( ∂∂y )i in TiH. The element ρθ in PSL2(R) defined by

ρθ(z) =
cos(θ/2)z + sin(θ/2)

− sin(θ/2)z + cos(θ/2)

fixes i in H and rotates v0 an angle θ counterclockwise. Let v in T 1H with basepoint
x + iy ∈ H and let θ be the angle between v and the vertical upward direction. Then,
the homography y · ρθ + x in PSL2(R) sends v0 to v.

To see that the action is simple, it is enough to show that if some homography in
PSL2(R) fixes the vector v0, it is in fact the identity. Take an homography of the form
ϕ(z) = az+b

cz+d , ad− bc = 1. The condition ϕ(v0) = v0 implies

ϕ(i) =
az + b

cz + d
= i, diϕ(v0) = ϕ′(i) · i =

i

(ci+ d)2
= i.

Then, it follows a = d, b = −c and ci + d = ±1, so c = 0 = b and a = d = ±1 which
gives ϕ = id

Homographies associated to PSL2(R) preserve the geometry of H, because they are
isometries: lengths and angles of vectors are preserved, geodesics are sent to geodesics,
the distance between points and the distance between vectors on T 1H is invariant. We
will make use of these properties in the sequel.
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3.2.2 Stable and unstable manifolds and horocyclic flows

Next we will introduce two important curves in the unitary tangent bundle which contain
information on the asymptotic behavior of the geodesic flow. We can define the stable
manifold and the unstable manifold at v ∈ T 1H as the sets

W s(v) =
{
u ∈ T 1H

∣∣∣ d(gt(v), gt(u))
t→+∞−−−−→ 0

}
,

W u(v) =
{
u ∈ T 1H

∣∣∣ d(gt(v), gt(u))
t→−∞−−−−→ 0

}
,

respectively.

We can explicitly determine these sets. Firstly, we focus in the case v0 = ( ∂∂y )i in

TiH. Suppose that u in T 1H is a vector with basepoint z such that d(gt(v0), gt(u))
tends to 0 when t tends to positive infinity. The image of v0 by the flow is given by

gt(v0) = et
(
∂
∂y

)
eti

. We see that

d(π(gt(v0)), π(gt(u))) ≥ d(eti, Im(γu(t))i) = |t− log Im(γu(t))| ,

so Im(γu(t)) is unbounded when t approaches the infinity. If the direction u is non-
vertical, then the image of γu is a semicircle, so its imaginary part is bounded. If u
is vertical but downwards, there is also contradiction. We deduce that u is vertical

upward, so we can write u = Im(z)
(
∂
∂y

)
z

for some z in H. If z = x+ iy, then gt(u) =

ety
(
∂
∂y

)
x+etyi

. By the same argument as before, we obtain a lower bound

d(π(gt(v0)), π(gt(u))) ≥ d(eti, etyi) = |log y| ,

so y = 1. We have proved that the stable manifold W s(v0) is included in the set{(
∂

∂y

)
x+i

∣∣∣∣x ∈ R} .
Let us prove that, indeed, there is an equality. On one hand, if u =

(
∂
∂y

)
x+i

, the

distance between the basepoints is

d(π(gt(v0)), π(gt(u))) = d(eti, x+ eti) ≤ |x|
et

t→+∞−−−−→ 0.

On the other hand, denoting by θ the angle between the geodesic and the horizontal at
the point eti, the angular part of the distance is

|θ1 − θ2| = 2θ = 2 arctan

(
|x|
2et

)
t→+∞−−−−→ 0.

See Figure 3.2 for a better understanding. This shows the assertion.

Secondly, using the fact that stable (and unstable) manifolds are preserved by isome-
tries, we can find the stable manifold at any vector. Given a vector v in T 1H, choose
the unique homography ϕ in PSL2(R) that sends v0 to v. Then, the stable manifold at
v is W s(v) = ϕ(W s(v0)). The projection on H of this set has to be a line or a circle,
because it is the image of a line by a homography. We observe that PSL2(R) sends the
set R∪{∞} to itself. Since ϕ preserves angles, the set π(W s(v)) has to be tangent to
the line R∪{∞}. If v is vertical pointing upward, π(W s(v)) has to be the horizontal
line (perpendicular to v) that passes through π(v). In the other cases, π(W s(v)) is the
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Figure 3.2: Two vertical geodesics starting at the same height.

unique circle tangent to R, passing trough π(v), perpendicular to v and v pointing to the
interior of the circle. The stable manifold itself is the set of unit vectors with basepoint
at π(W s(v)), perpendicular to it and pointing inward.

Finally, unstable manifolds can be computed from stable ones using that W u(v) =
−W s(−v). Usually, the curves π(W s(v)) and π(W u(v)) are called contracting and
expanding horocycles, respectively. In Figure 3.3, we represent a contracting horocycle
and its stable manifold.

Figure 3.3: Horocycle and stable manifold on the hyperbolic plane.

The contracting horocyclic flow {h+
s }s∈R is a flow on T 1H that parametri- zes the

stable manifolds by the length parameter. For all v in T 1H, consider the unique ϕ in
PSL2(R) such that ϕ(v0) = v. We define

h+
s (v) = ϕ

((
∂

∂y

)
s+i

)
.

Here we are using the fact that homographies respect stable manifolds and lengths, so,
since ( ∂

∂y )s+i is an arc length parametrization of the stable manifold at v0, W s(v0), its
image by ϕ is so for the stable manifold at v, W s(v) = ϕ(W s(v0)).

The expanding horocyclic flow {h−u }u∈R does the same for unstable manifolds. The
homography ρ defined by ρ(z) = −1

z takes the vector v0 to −v0. Since we have W u(v0) =
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−W s(−v0), then we obtain that

h−u (v) = −ϕρ
((

∂

∂y

)
s+i

)
.

parametrizes the unstable manifold at v by arc length.

It is useful to introduce two new sets, called the weak stable manifold W so(v) and
the weak unstable manifold W uo(v), defined by

W so(v) =
⋃
t∈R

W s(gt(v)) =
⋃
t∈R

gt(W
s(v)),

W uo(v) =
⋃
t∈R

W u(gt(v)) =
⋃
t∈R

gt(W
u(v)).

Thanks to the previous description of the stable and unstable manifolds, that we may
call strong to differentiate from the weak manifolds, we see that the weak stable manifold
at a vertical upward vector is the set of unit vertical upward vectors with any basepoint.
In the other cases, the weak stable manifold is the set of normal inward vectors to circles
tangent to the real line with the same point of tangency as the circle π(W s(v)).

3.2.3 Correspondence with the algebraic model

In this section, we establish the relation between geodesic and horocyclic flows on the
hyperbolic plane and the algebraic model we have described in the first section. The
map

Ψ : PSL2(R) −→ T 1H
ϕ 7−→ ϕ(v0)

is a diffeomorphism. The easiest way to see it is to write the map in coordinates. It is
already clear that Ψ is bijective.

A vector v in T 1H has coordinates (x, y, θ) ∈ R×(0,+∞)×R /2πZ, where (x, y) in

H is the basepoint of v and θ is the angle of v with the vertical upward vector
(
∂
∂y

)
(x,y)

.

For example, the maps Ψ and Ψ−1 in the chart (U1, ψ1) of PSL2(R) and the previous
coordinates on T 1H are

Ψ(b, c, d) =

(
c+ b(c2 + d2)

d(c2 + d2)
,

1

c2 + d2
,−2 arctan

( c
d

))
,

Ψ−1(x, y, θ) =

(
x cos θ2 + y sin θ

2√
y

,−
sin θ

2√
y
,
cos θ2√
y

)
, (3.5)

and we see they are differentiable because d is positive. Similarly, we can compute
the expressions of Ψ and its inverse in the other chart and we can see they are also
differentiable, so we deduce that Ψ is a diffeomorphism.

Next, we want to know what the geodesic flow on PSL2(R) looks like once passed to
T 1H by the previous diffeomorphism. If ϕ is in PSL2(R), we compute

Ψ(gt(ϕ)) = Ψ
(
ϕ
(
et/2 0

0 e−t/2

))
=
(
ϕ
(
et/2 0

0 e−t/2

))
(v0) = ϕ

((
et/2 0

0 e−t/2

)
v0

)
= ϕ

(
et
(
∂

∂y

)
eti

)
= ϕ(gt(v0)) = gt(ϕ(v0)) = gt(Ψ(ϕ)),
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so it turns out that the geodesic flows defined on each side are conjugate by Ψ, that is
to say, the following diagram is commutative

PSL2(R) T 1H

PSL2(R) T 1H .

Ψ

gt gt

Ψ

Similar computations show that the two horocyclic flows are also conjugated by Ψ.

It is obvious that the (left) action of PSL2(R) on the space PSL2(R) and the action
of the same group on T 1H are conjugated as well. Then, for any discrete subgroup Γ of
PSL2(R), the diffeomorphism Ψ induces a homeomorphism between the action quotients
Γ\PSL2(R) and T 1H /Γ. Geodesic and horocyclic flow are well defined on T 1H /Γ and
conjugated to the ones in Γ\PSL2(R).

On the unitary tangent bundle T 1H, consider the pushforward by Ψ of the Liouville
measure µ on PSL2(R), that we denote also by µ. Automatically, the new measure is
invariant by elements of PSL2(R) and by the flows gt, h

+
s and h−u . Then, there is a well

defined measure on the quotient T 1H /Γ invariant by the geodesic and horocyclic flows.
The dynamical properties are respected by conjugation, so we deduce the following
result.

Theorem 6. Let Γ be a discrete subgroup of PSL2(R) with finite covolume. Then the
geodesic flow gt on T 1H /Γ is mixing and the horocyclic flows h+

s , h
−
u are ergodic with

respect to the Liouville measure µ on T 1H /Γ.

The hypothesis of covolume finiteness for Γ is equivalent to the finiteness of the
volume of the quotient space T 1H /Γ. We now take a closer look at this space.

Proposition 10. Let Γ be a discrete subgroup of PSL2(R). Then, the subgroup Γ acts
totally discontinuously on the unitary tangent bundle T 1H. In particular, the quotient
T 1H /Γ is a differentiable manifold.

Proof. Given any v in T 1H with basepoint x in H, since the action of Γ on H is properly
discontinuous, the orbit Γx is discrete. There exists a ball B(x, ε) such that Γx ∩
B(x, ε) = {x}. Denoting B = B(x, ε/2), we have that γ(B) ∩ B 6= ∅ implies that the
homography γ is in the stabilizer of x. The lift T 1B of B to the unitary tangent bundle
T 1H is an open neighborhood of v such that γ(T 1B)∩T 1B 6= ∅ implies that γ is in the
stabilizer of x. But the latter is finite and we know that the only element of PSL2(R)
fixing v is the identity, so we can find an open neighborhood W of v in T 1H that satisfies
γ(W ) ∩W = ∅ for γ 6= id.

Recall that for H /Γ being a manifold we need a stronger property than Γ being
discrete, we need the subgroup Γ to act totally discontinuously. Suppose Γ acts totally
discontinuously on H. Then, the projection p : H → H /Γ is a local isometry between
Riemannian manifolds. It can be naturally lifted to the unitary tangent bundles p̃ :
T 1H→ T 1(H /Γ). The latter is a covering map and the covering group turns out to be
Γ, therefore we obtain a natural diffeomorphism T 1H /Γ→ T 1(H /Γ).

In Chapter 4, we will define what the geodesic flow is in a more general situation,
a complete Riemannian manifold with negative sectional curvature. The previous dif-
feomorphism conjugates the geodesic flow on T 1H /Γ with the geodesic flow defined on
the unitary tangent bundle of the manifold H /Γ.
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3.2.4 Liouville measure and Hopf coordinates

Nowadays, the Liouville measure on T 1H is usually defined to be the volume form of
the Sasaki metric. However, in this chapter we are not discussing this approach and we
just work with its expression in coordinates. We start by computing the expression of
the Liouville measure µ in the coordinates (x, y, θ).

Recall that the density of the Liouville measure on PSL2(R) is dµ = 1
d dbdcdd.

Then, thanks to Eq. 3.5, we compute

Ψ∗dµ =
cos θ2√
y

∣∣JΨ−1
∣∣ dx dy dθ =

1

4y2
dx dy dθ.

The factor 1/4 appears as a matter of normalization, the usual Liouville metric does not
have the factor. The expression allows to deduce that, in the case that Γ is subgroup of
PSL2(R) acting totally discontinuously on H, we have that

µ(T 1H /Γ) = 2πVol(H /Γ).

From this fact and Theorem 6, we deduce the next corollary.

Corollary 1. Let M be a complete Riemannian surface with curvature −1 and finite
volume. Then, the geodesic flow on T 1M is mixing and the horocyclic flows on T 1M
are ergodic with respect to the Liouville measure.

Before ending the section we want to show how µ can be written in a coordinate
system that has the weak stable manifold and the unstable manifold as axis.

Let v be a vector in T 1H. In a vast majority of cases, the vector v does not point
vertically upward, therefore the associated geodesic trajectory is a semicircle perpendic-
ular to the real line at two points. The one that is in the positive direction of v will be
denoted by v+ and the other by v−, as it is drawn in Figure 3.4.

Figure 3.4: Different coordinates of the hyperbolic plane.

The unstable manifold W u(v) is the set of normal outward vectors to the circle
tangent to the real line at v− and containing the basepoint of v. Then, there is a unique
vertical upward vector in W u(v). Recalling that the weak stable manifold of the vertical
upward vector v0 at i in H is the set of all unit vertical upward vectors, the previous
vector can be written as gt(h

+
s (v0)) for some s, t in R.

On the other hand, the unstable manifold W u(v0) at v0 is the set of normal outward
vectors to the circle containing i and tangent to the real line at 0. There is exactly
one vector of W u(v0) that lies in the weak stable manifold, namely, the vector on the
semicircle containing 0 and v+. This vector can be written as h+

u (v0) for some u in R.
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The values (s, t, u) are a system of coordinates defined on a subset of the unitary
tangent bundle. The origin of this system is the vector v0, the (s, t)-axis is the weak
stable manifold W so(v0) and the u-axis is the unstable manifold W u(v0).

From Figure 3.4 we see that s = v−. The number t is the distance between the circle
tangent to the real line at v− of euclidean diameter one an the circle tangent at the same
point and pasing through the basepoint of v. Then, the values (v−, v+, t) are another set
of coordinates, called the Hopf coordinates. If we apply the homography z 7→ −1/z, the
unstable manifold W u(v0) transforms to the horizontal line passing through i. Then,
the image of h−u (v0) and the image of v+ by −1/z lie on the same vertical line, so we
deduce that u = −1/v+.

We can establish the relation between these coordinates and the classical coordinates
(x, y, θ). We can draw the semicircle representing the geodesic trajectory of the vector
with coordinates (x, y, θ) and compute the two intersection points with the real axis to
obtain the expression of v− and v+. Then we can use the homography z 7→ 1/(v− − z)
that sends v− to∞,∞ to 0, v−+i to i and the tangent circle at v− of euclidean diameter
1 to the horizontal line passing through i. Then, t is the distance between this line and
the image of the point x+ yi, which is a very simple computation. By this method we
obtain the following relations:

v− = x+ y tan(θ/2),

v+ = x− y

tan(θ/2)
,

t = log y − 2 log |cos(θ/2)| .

The Hopf coordinates (v−, v+, t) are well defined from the whole space T 1H to the
set (R̄× R̄−∆)×R, where R̄ = R∪{∞} and ∆ is the diagonal of R̄× R̄. Computing the
Jacobian of the transformations, we can write the expression of the Liouville measure
in the different sets of coordinates, obtaining

dµ =
dx dy dθ

y2
= 2

dv−dv+dt

(v+ − v−)2
= 2

ds dt du

(su+ 1)2
.





Chapter 4

Geodesic flow in negative
curvature

In this chapter we will study the geodesic flow in manifolds of varible negative curvature.
The main goal will be to prove the ergodic property of the flow when the manifold is
compact using the so-called Hopf argument. To understand the behavior of the flow it
is important to study the geometry of negative curvature. As we will see, the geodesic
flow is related to Jacobi fields, which at the same time are linked to the curvature of the
manifold. We will also need to formalize the notion of horospheres, which play the role
of horocyclic flow in higher dimension, and stable and unstable manifolds. All this will
be done in Section 4.1.

In Section 4.2, we will explain how the proof of the ergodicity proceeds and what
ingredients we need. It will remain to prove a rather technical property called absolute
continuity. In Section 4.3, we will look at a class of flows that generalize the geodesic
flow. They satisfy a property that will be needed in the proof of absolute continuity.
Finally, we will be able to prove absolute continuity and, thus, the ergodicity of geodesic
flow in Section 4.4.

This chapter is inspired in the notes [Bal95] of W. Ballmann, that include an ap-
pendix dedicated to the ergodic property of the geodesic flow.

4.1 Geometry in negative curvature

4.1.1 Geodesic flow

Our goal in this preliminary section is to define the geodesic flow in a general manifold
with a Riemannian metric. This flow is defined on the tangent bundle of the manifold
and it can be restricted to the unitary tangent bundle, that is where we will work.
Certain properties of the geodesic flow are reflected by its tangent map defined in the
double tangent bundle. Next, we provide a nice description of this space.

Let M be a Riemannian manifold. We assume that the reader is already familiar
with the structure as manifold of the tangent bundle TM of M . Let π : TM → M
denote the projection. We consider the bundle

E = π∗(TM)⊕ π∗(TM)

of the tangent bundle TM . The fiber at the point v in TM is the space TxM ⊕ TxM ,
where x = π(v).

25
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We can also consider the tangent bundle TTM of the manifold TM , know as the
double tangent bundle. For each Z in TTM , there exists a curve V : (−δ, δ) → TM
such that V̇ (0) = Z. Set c = π ◦ V and define a map I : TTM → E by

I(Z) =

(
ċ(0),

DV

dt
(0)

)
,

where DV
dt is the covariant derivative of the field V at 0 in the direction ċ(0).

Recall that a system of coordinates in the manifold M gives a compatible system of
coordinates of TM . If we write the map I in these coordinate charts, it is not difficult
to see the following result.

Lemma 2. The map I : TTM → E is an isomorphism of vector bundles.

From now on, we will identify the double tangent bundle TTM to the vector bundle
E with no further mention.

To define the geodesic flow we will additionally suppose that the manifold M is
complete. Given v in TM , let γv denote the unique geodesic satisfying γ̇v(0) = v. The
geodesic flow gt : TM → TM on the tangent bundle is then defined by

gt(v) = γ̇v(t), ∀t ∈ R .

Jacobi fields are very useful to describe the geodesic flow. Let us make a reminder of
these fields. Let γ : [0, a]→M be a geodesic. We say that a vector field J : [0, a]→ TM
along γ, i. e. π ◦ J = γ, is a Jacobi field if it satisfies the Jacobi equation

J ′′(t) +R(γ̇(t), J(t))γ̇(t) = 0, ∀t ∈ [0, a], (4.1)

where J ′′ stands for the second covariant derivative of J in the direction of the geodesic
γ̇(t) and R is the Riemann curvature tensor.

The Jacobi equation 4.1 is a linear differential equation of second order, so given
initial conditions J(0) and J ′(0) there exists a unique solution of the equation. The
following result is easy to prove with some computations, but it is out of the topic of
this dissertation. It can be found in Chapter 5 of [dC92].

Lemma 3. Let V : [0, a]→ TM be a field with V (0) = v. Then the field J defined by

J(s) =
∂

∂t

∣∣∣∣
t=0

γV (t)(s)

is a Jacobi field on the geodesic γv.

Let v in TM and let (X,Y ) be a vector in TvTM . Consider a smooth curve V on
TM such that ċ(0) = X and DV

dt (0) = Y . We consider the Jacobi field

J(s) =
∂

∂t

∣∣∣∣
t=0

γV (t)(s)

on the geodesic γv. The tangent map of the geodesic flow is

dvgs(X,Y ) =
d

dt

∣∣∣∣
t=0

gs(V (t)).

If we denote W (t) = gs(V (t)) = γ̇V (t)(s), then π ◦W (t) = γV (t)(s) and we obtain

dvgs(X,Y ) =

(
(π ◦W )′(0),

DW

dt
(0)

)
=

(
∂

∂t

∣∣∣∣
t=0

γV (t)(s),
D

∂t

∣∣∣∣
t=0

γ̇V (t)(s)

)
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=

(
J(s),

D

∂t

∣∣∣∣
t=0

∂

∂s
γV (t)(s)

)
=

(
J(s),

D

∂s

∂

∂t

∣∣∣∣
t=0

γV (t)(s)

)
= (J(s), J ′(s)).

The Jacobi field J is determined by J(0) = X and J ′(0) = Y . We deduce the expression
of the differential of the geodesic flow.

Proposition 11. Let s ∈ R and v ∈ TM . The tangent map of the geodesic flow
gt : TM → TM acts by

dvgs(X,Y ) = (J(s), J ′(s)),

where J is the unique Jacobi field such that J(0) = X and J ′(0) = Y .

Let us now talk about the Sasaki metric on the unit tangent bundle that we have
already mentioned. Using the decomposition of the double tangent bundle, for all
(X1, Y1), (X2, Y2) in TTM , we define the metric

〈(X1, Y1), (X2, Y2)〉 = 〈X1, X2〉+ 〈Y1, Y2〉, (4.2)

where the right products are done using the Riemannian metric of M . This endows the
tangent bundle with a structure of Riemannian manifold.

We introduce a differential 1-form on TM by

αv((X,Y )) = 〈v,X〉,

for v in TM , and a differential 2-form

ω((X1, Y1), (X2, Y2)) = 〈X2, Y1〉 − 〈X1, Y2〉. (4.3)

Working in coordinates we can see that dα = ω. Next, we observe that ω is invariant by
the geodesic flow. Let J1, J2 two Jacobi fields such that Ji(0) = Xi and J ′i(0) = Yi for
i = 1, 2. Then, using the Jacobi equation and the symmetries of the curvature tensor
we have

d

dt
ω(dvgt(X1, Y1), dvgt(X2, Y2)) =

d

dt

(
〈J2(t), J ′1(t)〉 − 〈J1(t), J ′2(t)〉

)
= 〈J2, J

′′
1 〉 − 〈J1, J

′′
2 〉 = −〈R(γ̇v, J1)γ̇v, J2〉+ 〈R(γ̇v, J2)γ̇v, J1〉 = 0.

We claim that ωn is the volume form of the Sasaki metric. This follows from the
fact that ωn evaluated at an orthonormal basis is ±1. In effect, for a fixed v in TM take
an orthonormal basis e1, . . . , en of Tπ(v)M . Then the vectors F1, G1, . . . , Fn, Gn, where
Fi = (0, ei) ∈ TvTM and Gi = (ei, 0) ∈ TvTM , form an orthonormal basis of the Sasaki
metric 4.2. Using 4.3 we see that the form ωv in the dual basis is written

ωv =

n∑
i=1

F ∗i ∧G∗i .

It follows that

ωnv = F ∗1 ∧G∗1 ∧ · · · ∧ F ∗n ∧G∗n
and we conclude that ωn is the volume form. The measure associated to this volume
form ωn is called the Liouville measure and it is invariant by the geodesic flow, because
ω is.

Let us turn our attention to the unitary tangent bundle T 1M , which is a submanifold
of TM of one dimension less. An important remark is that the normal direction of this



28 CHAPTER 4. GEODESIC FLOW IN NEGATIVE CURVATURE

submanifold at the point v in T 1M is given by (0, v) in TvTM . Consequently, the
tangent spaces of this submanifold can be described as

TvT
1M = {(X,Y ) ∈ TvTM |Y⊥v}.

The geodesic flow sends the unitary tangent bundle T 1M to itself. The differential
forms α and ω can be restricted to T 1M , we also denote them α and ω. The fact that we
are in the unitary tangent bundle implies that α is also invariant by the geodesic flow.
For all v in T 1M and (X,Y ) in TvT

1M , take the Jacobi field J such that J(0) = X and
J ′(0) = Y and compute

d

dt
αgt(v)(dvgt(X,Y )) =

d

dt
αgt(v)(J(t), J ′(t)) =

d

dt
〈γ̇v(t), J(t)〉

= 〈γ̇v(t), J ′(t)〉 = 〈γ̇v(0), J ′(0)〉 = 〈v, Y 〉 = 0.

The unitary tangent bundle inherits a Riemannian structure, whose volume form at
point v in TM is

ι(0,v)ω
n
v = n ι(0,v)ωv ∧ ωn−1

v ,

but for all (X,Y ) in TvT
1M , we have

ι(0,v)ωv(X,Y ) = ωv((0, v), (X,Y )) = 〈v,X〉 = αv(X,Y ),

so we deduce that the volume form of the unitary tangent bundle is ι(0,v)ω
n = nα∧ωn−1.

The measure defined by this volume form is also called the Liouville measure. We have
proved the following result.

Theorem 7. Let M be a complete Riemannian manifold. The Liouville measure on the
unitary tangent bundle T 1M is invariant by the geodesic flow gt : T 1M → T 1M .

Let us show what the Sasaki metric looks like in the case of the hyperbolic plane.
We use the coordinates (x, y) in H. Then the tangent bundle T H has a compatible set
of coordinates (x̄, ȳ, ξ, η), where for all v in T H, x̄(v) = x(π(v)), ȳ(v) = y(π(v)) and

v = ξ

(
∂

∂x

)
π(v)

+ η

(
∂

∂y

)
π(v)

.

The unitary tangent bundle T 1H is equipped with the coordinates (x̄, ȳ, θ) as in Chapter
3.

First of all we need to compute the expression of the basis of the tangent space of
T H via the identification I. We obtain

I
(
∂

∂x̄

)
=

((
∂

∂x

)
,
ξ

y

(
∂

∂y

)
− η

y

(
∂

∂x

))
,

I
(
∂

∂ȳ

)
=

((
∂

∂y

)
,−ξ

y

(
∂

∂x

)
− η

y

(
∂

∂y

))
,

I
(
∂

∂ξ

)
=

(
0,

(
∂

∂x

))
,

I
(
∂

∂η

)
=

(
0,

(
∂

∂y

))
.
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To obtain the expressions in the coordinates of T 1H we set ξ = −r sin θ, η = r cos θ and
we let r = 1. Using the definitions of the Sasaki metric we compute its matrix in the
basis of (x̄, ȳ, θ), 

2
y2

0 1
y

0 2
y2

0
1
y 0 1

 .

It follows that the volume form in these coordinates is
√

2

y2
dx̄ dȳ dθ

which coincides with the Liouville measure density we used in Chapter 3, up to a con-
stant.

4.1.2 Jacobi fields in nonpositive curvature

In the previous section, we have seen that there is a relation between the geodesic flow
and Jacobi fields. In the present one, we will study some properties of the Jacobi fields
in nonpositive sectional curvature that will be needed in the future.

Let us introduce a particular type of Jacobi field.

Definition 5. Let M be a Riemannian manifold of nonpositive curvature. We say that
a Jacobi field J along a unit speed geodesic γ : R→M is stable if its norm is bounded
for nonnegative time, i.e there exists a constant C > 0 such that foll all t ≥ 0 we have
‖J(t)‖ ≤ C.

We will need the following properties which are proved in [Bal95, IV.2.8].

Proposition 12. Let M be a Riemannian manifold of nonpositive curvature and γ :
R→M a unit speed geodesic. Set p = γ(0).

(i) For all vector X in TpM , there exists a unique stable Jacobi field JX along γ such
that JX(0) = X.

(ii) Let {γn}n∈N a sequence of unit speed geodesics converging to γ. Let Jn be a Jacobi
field along γn, for all natural n. Suppose that Jn(0) → X and that there is a
constant C > 0 and a sequence of real numbers converging to infinity tn → +∞
such that ‖Jn(tn)‖ ≤ C for all n. Then we have Jn → JX and J ′n → J ′X

The main goal of this section are the following estimates of stable Jacobi fields, which
will allow to control the growth of the geodesic flow.

Proposition 13. Let M be a Riemannian manifold of nonpositive curvature, γ : R→M
a unit speed geodesic and J a stable Jacobi field along γ perpendicular to γ̇.

(i) If the curvature of M along the geodesic γ is bounded from above by −a2, where
a ≥ 0, then we have

‖J(t)‖ ≤ ‖J(0)‖ e−at and
∥∥J ′(t)∥∥ ≥ a ‖J(t)‖ ∀t ≥ 0.

(ii) If the curvature of M along the geodesic γ is bounded from below by −b2, where
b ≥ 0, then we have

‖J(t)‖ ≥ ‖J(0)‖ e−bt and
∥∥J ′(t)∥∥ ≤ b ‖J(t)‖ ∀t ≥ 0.
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We will show how the proof goes in the case of curvature bounded from above. The
proof for the second case does not follow the same method. We start with a lemma that
estimates the second derivative of the norm of a Jacobi field.

Lemma 4. Let γ : R → M be a unit speed geodesic. Suppose that the curvature of M
along γ is bounded above by a constant k. If J is a Jacobi field along γ perpendicular to
γ̇, then for all t where the field J does not vanish we have

‖J‖′′ (t) ≥ −k ‖J‖ (t).

Proof. We compute the second derivative

‖J‖′′ =
(
〈J ′, J〉
‖J‖

)′
=

1

‖J‖2

(
〈J ′′, J〉 ‖J‖+ 〈J ′, J ′〉 ‖J‖ − 〈J

′, J〉2

‖J‖

)

=
1

‖J‖3
(
〈−R(γ̇, J)γ̇, J〉 ‖J‖2 +

∥∥J ′∥∥2 ‖J‖2 − 〈J ′, J〉2
)
≥ −〈R(γ̇, J)γ̇, J〉

‖J‖
.

The sectional curvature at the plane spanned by γ̇ and J is

〈R(γ̇, J)γ̇, J〉
‖γ̇‖2 ‖J‖2 − 〈γ̇, J〉2

=
〈R(γ̇, J)γ̇, J〉
‖J‖2

and is smaller than k. Hence, we obtain the lower bound of the second derivative.

The same computation shows that in the case of nonpositive curvature the function
‖J‖ is convex, so it cannot have more than one zero if the Jacobi field is nonzero. If J
is a Jacobi field such that J(0) = 0, then the consequence of the lemma is valid for all t
different from 0. In addition, we observe that the tangent direction of a Jacobi field is

〈γ̇(t), J(t)〉 = 〈γ̇(0), J ′(0)〉t+ 〈γ̇(0), J(0)〉,

so if J(0) = 0 the fact that J is perpendicular to γ̇ means that J ′(0) and γ̇(0) are
perpendicular.

Proposition 14. Let γ : R → M be a unit speed geodesic. Suppose that the curvature
of M along γ is bounded above by a constant k = −a2 < 0. If J is a Jacobi field along
γ with J(0) = 0, J ′(0)⊥γ̇(0), then for t > 0 we have

‖J‖′ (t) ≥ a coth(at) ‖J(t)‖ .

Proof. By Lemma 4, the quantity(
‖J‖′ (t) sinh(at)− a ‖J‖ (t) cosh(at)

)′
=
(
‖J‖′′ (t)− a2 ‖J‖ (t)

)
sinh(at).

is nonnegative for positive time t. Then, for t > 0,

‖J‖′ (t) sinh(at)− a ‖J‖ (t) cosh(at) ≥ 0, (4.4)

and the statement follows.

With these ingredients we can prove the estimates for the case of bounded above
curvature.
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Proof of Proposition 13 (i). For each n ≥ 1 consider the Jacobi field Jn along γ such
that Jn(0) = J(0) and Jn(n) = 0. Notice that J is perpendicular to γ̇ at least at two
points, so it has to be perpendicular everywhere. Proposition 14 applied to the field J̃n
defined by J̃n(t) = Jn(n− t) gives

‖J̃n‖′

‖J̃n‖
(t) ≥ a coth(at). (4.5)

Integrating both sides of 4.5 we obtain between n − t and n, and then taking the
exponential, we obtain for t < n

‖J̃n(n)‖
‖J̃n(n− t)‖

(t) ≥ sinh(an)

sinh(a(n− t))
. (4.6)

Equations 4.5 and 4.6 in terms of Jn and J are

‖Jn‖′ (t) ≤ −a coth(a(n− t)) ‖Jn(t)‖ ,

‖Jn(t)‖
‖J(0)‖

≤ sinh(a(n− t))
sinh(an)

.

Proposition 12 implies Jn → J and J ′n → J ′ when n tends to infinity. The limit of the
last expression gives the first formula in the statement. For the other we notice that∣∣‖Jn‖′∣∣ =

|〈Jn, J ′n〉|
‖Jn‖

≤
∥∥J ′n∥∥

and use the previous bounds.

To finish the section we state an estimate of the distance between two geodesic flow
orbits that will be needed later [Bal95, IV.2.10]. We let d1 denote the distance on the
unitary tangent bundle.

Proposition 15. Let M be a Hadamard manifold. Suppose that the sectional curvature
is pinched between two constants −b2 ≤ −a2 < 0. Then for every constant D > 0 there
exist constants C, T ≥ 1 such that

d1(gt(v), gt(w)) ≤ Ce−atd1(v, w), 0 ≤ t ≤ R,

where v and w are inward unit vectors to a geodesic sphere of radius R ≥ T in M with
basepoints x and y at distance less than D.

4.1.3 Horospheres

We continue the study of the geodesic flow, this time we will look at some objects called
horospheres that are intimately related to the stable and unstable manifolds. To define
them we will first talk about Busemann functions. We will work on a Hadamard mani-
fold M , which is a simply connected, complete Riemannian manifold with nonpositive
curvature.

Definition 6. A ray σ : [0,+∞)→M is a unit speed minimizing geodesic.

The word minimizing means that, for all t, t′ in [0,+∞), the distance between γ(t)
and γ(t′) is |t− t′|. A geodesic is always locally minimizing, but here we are requiring
that it holds globally.
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Definition 7. Two rays σ1, σ2 are asymptotic if d(σ1(t), σ2(t)) is bounded uniformly in
t ≥ 0.

To be asymptotic is an equivalent relation over the set of all rays in M . We define
the closure of M as the set of equivalence classes by this relation and it will be denoted
by M(∞). If ξ is an equivalence class of asymptotic rays and σ is a ray in ξ, we will
write σ(∞) = ξ.

Let σn : [0, ln] be sequence of unit speed geodesic segments on M of length tending
to infinity, i. e. ln → +∞. We say that the sequence σn converges to a ray σ of M if
for all real numbers ε > 0 and R > 0, there is a natural n0 such that , for all n ≥ n0,
we have ln > R and

d(σn(t), σ(t)) < ε

for t in [0, R].

To continue our discussion we need the next fact from nonpositive curvature geom-
etry (see [Bal95, I.5.4]).

Lemma 5. Let M be a Hadamard manifold and let σ1, σ2 : I → M be two unit speed
geodesics on M . Then the function

d(σ1(t), σ2(t))

of t is convex.

Thanks to this lemma we can prove the following fact about rays.

Proposition 16. For each x in M and each ξ in M(∞), there is a unique ray σx,ξ :
[0,+∞)→M such that σx,ξ(0) = x and σx,ξ(∞) = ξ.

Sketch of the proof. The unicity follows from the fact that if σ1, σ2 are two asymptotic
rays starting at the same point, then the function

d(σ1(t), σ2(t))

of t ∈ [0,+∞) is 0 at the point 0, is bounded and it is convex by Lemma 5, so it is 0
everywhere.

Let σ be a ray representing ξ. We consider the parametric family of geodesic segments
σT connecting the point x to the point σ(T ), where T > 0. Using again the properties
of the manifolds with nonpositive curvature (see [Bal95, II.2.1]), we prove that: given
two real numbers ε > 0 and R > 0, there exists T0 > 0 such that T, S ≥ T0 implies

d(σT (t), σS(t)) < ε

for all t in [0, R].

We deduce that σT converges to some ray σx,ξ starting at x and asymptotic to σ, or
equivalently σx,ξ(∞) = ξ.

Let us introduce an essential notion related to the horospheres.

Definition 8. Let x be a point in M and ξ a point of the closure M(∞). The Busemann
function bx,ξ : M → R at ξ based at x is defined by

bx,ξ(z) = lim
t→+∞

(d(σ(t), z)− t) ,

for all z in M , where σ = σx,ξ is the unique ray such that σx,ξ(0) = x and σx,ξ(∞) = ξ.
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The limit in the definition exists because the function h(t) = d(σ(t), z)−t is bounded
from below and decreasing. In effect, we have

t = d(σ(0), σ(t)) ≤ d(σ(0), z) + d(z, σ(t)),

so h(t) ≥ −d(x, z) and if t′ > t, we also have

d(σ(t′), z) ≤ d(σ(t′), σ(t)) + d(σ(t), z) = t′ − t+ d(σ(t), z),

so h(t′) ≤ h(t).

The Busemann function is continuous, in fact, a simple computation shows that

|bx,ξ(y)− bx,ξ(z)| ≤ d(y, z).

We want to see that Busemann functions are approximated by some simpler func-
tions. Let bx,y : M → R denote the function defined by

bx,y(z) = d(y, z)− d(y, x).

Definition 9. We say that a sequence of points {xn}n∈N converges to a point ξ of the
closure M(∞) if the distance d(x0, xn) → +∞ and the minimizing geodesic segments
σx0,xn connecting the point x0 to the point xn tend to the ray σx0,ξ.

We remark that the previous definition does not depend on the point x0 in the
following sense: if {xn} is a sequence converging to ξ in M(∞) and y is a point in M ,
then the geodesic segments σy,xn converge to the geodesic ray σy,ξ. It can be seen with
a similar argument to the one used in the proof of Proposition 16.

The reason for introducing these last notions is the following result.

Proposition 17. Let {xn} be a sequence converging to ξ in M(∞) and x be a point in
M . Then we have

lim
n→+∞

bx,xn = bx,ξ.

Proof. The fact that σx,xn → σx,ξ implies that d(σx,ξ(d(x, xn)), xn) → 0 as n → +∞.
In addition, we have d(x, xn)→ +∞, and therefore, for all z in M ,

bx,ξ(z) = lim
t→+∞

(d(σx,ξ(t), z)− t) = lim
n→+∞

(d(σx,ξ(d(x, xn)), z)− d(x, xn))

= lim
n→+∞

(d(xn, z)− d(xn, x)) = lim
n→+∞

bx,xn(z).

In the previous proposition we have proved that Busemann functions are a pointwise
limit. In fact, it can be seen with some geometry of nonpositive curvature that the
convergence actually is uniform on compact sets [Bal95, II]. This fact will be used in
this dissertation without proof.

A horosphere is a level set of a Busemann function. More precisely, for some x in M
and ξ in M(∞), the level set

{z ∈M | bx,ξ(z) = 0}

is called the horosphere centered at ξ passing through x. Observe that bx,ξ(x) = 0 so the
point x is contained in a horosphere passing through x.
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It is clear that, for all points x, y, z, w in M , the equality

bx,w(z)− by,w(z) = bx,w(y)

holds. By applying it to the points x, y, z, wn, where wn is a sequence of points converging
to ξ in M(∞), and passing to the limit, we obtain the equality

bx,ξ(z)− by,ξ(z) = bx,ξ(y).

This implies the equality between horospheres

{z ∈M | by,ξ(z) = R} = {z ∈M | bx,ξ(z) = R+ bx,ξ(y)},

where R is a real number, so the set of horospheres given by the function bx,ξ is the
same as the set of the ones given by by,ξ, whatever the points x and y in M are.

Let x be a point of M and {xn} be a sequence of points of M converging to ξ in
M(∞). The level set b−1

x,xn(0) is the sphere centered at xn passing through x. Since we
have bx,xn → bx,ξ, we can say that the horosphere centered at ξ passing through x is the
limit of spheres passing through x when their centers tend to ξ and the convergence is
uniform on compact sets.

Now we introduce some subspaces of the unitary tangent bundle T 1M . The (strong)
stable manifold at v in T 1M is the set

W s(v) = {w ∈ T 1M | d(γv(t), γw(t))
t→+∞−−−−→ 0}.

First of all, we also remark that

gt(W
s(v)) = W s(gt(v)) ∀t ∈ R .

In the next proposition we reveal the relation between stable manifolds and horospheres.

Proposition 18. Let v be a vector in T 1M with basepoint x and let ξ denote the
asymptotic class of the ray associated to v. Then the stable manifold at v is the set
of vectors with associated ray in ξ and starting point on the horosphere centered at ξ
passing through x, i. e.

W s(v) = {σ̇y,ξ(0) | y ∈M, bx,ξ(y) = 0},

Proof. Let w be a vector in W s(v) with basepoint y in M . The ray σx,ξ is the restriction
of the geodesic γv starting at v to nonnegative time. Moreover, it is clear that γv and
γw are asymptotic, so σy,ξ is the restriction of the geodesic γw to nonnegative time and
it follows that w = σ̇y,ξ(0). Let us show that bx,ξ(y) = 0. We have

|bx,ξ(y)| = lim
t→+∞

|d(σx,ξ(t), y)− t| = lim
t→+∞

|d(σx,ξ(t), y)− d(σy,ξ(t), y)| ≤

lim
t→+∞

d(σx,ξ(t), σy,ξ(t)) = lim
t→+∞

d(γv(t), γw(t)) = 0,

so y is in the horosphere centered at ξ passing trough x.

Conversely, let y be a point in the horosphere centered at ξ passing through x and
we must show that

d(σx,ξ(t), σy,ξ(t))
t→+∞−−−−→ 0.

For any sequence of real numbers tn → +∞, consider the sequence of points xn =
σx,ξ(tn). This sequence converges to ξ in the closure M(∞). Then we have

d(σx,ξ(tn), σy,ξ(tn)) = d(xn, σy,ξ(d(x, xn))) ≤ d(xn, σy,ξ(d(y, xn)))+
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d(σy,ξ(d(y, xn)), σy,ξ(d(x, xn))) = d(xn, σy,ξ(d(y, xn))) + |d(xn, y)− d(xn, x)|
= d(xn, σy,ξ(d(y, xn))) + |bx,xn(y)|

and both terms tend to zero, the first because σy,xn → σy,ξ and the second because
bx,xn(y)→ bx,ξ(y) = 0.

We define the weak stable manifold at v as the set

W so(v) = {w ∈ T 1M | γv(∞) = γw(∞)}.

It is clear that the strong stable manifold is included in the weak stable manifold and
that the weak stable manifold is the same along the orbit of a vector by the geodesic
flow. In fact, we will prove that each point in the weak stable manifold is on the strong
stable manifold of one of these vectors, i. e. we have the equality

W so(v) =
⋃
t∈R

W s(gt(v)). (4.7)

Let w any vector in W so(v) and denote x = π(v), y = π(w) and ξ the asymptotic class
of the rays generated by v and w. Then y is in the horosphere centered at ξ and passing
through γv(t0), where t0 = −bx,ξ(y), so w is contained in W s(gt0(v)). In effect,

bγv(t0),ξ(y) = bx,ξ(y) + bγv(t0),ξ(x) = bx,ξ(y) + t0 = 0.

For every ξ in M(∞), we introduce a vector field vξ defined for all x in M by
vξ(x) = σ̇x,ξ(0). Then the weak stable manifold is described as

W so(v) = {vξ(z) | z ∈M}.

where ξ = γv(∞). The next proposition helps to understand stable manifolds.

Proposition 19. Let M be a Hadamard manifold, x a point in M and ξ a point on the
closure M(∞). Then the Busemann function bx,ξ at ξ based at x has regularity C2 and
we have

grad bx,ξ = −vξ (4.8)

and for all z in M and X in TzM the covariant derivative of the previous fields is

DX(grad bx,ξ) = −J ′X(0),

where JX is the stable Jacobi field along the ray σz,ξ with JX(0) = X.

Sketch of the proof. For y in M consider the unitary radial field vy centered at y, given
by vy(z) = σ̇z,y(0) for all z in M . The first property is true if we replace horospheres
for spheres, i. e. for all points x, y in M , we have

grad bx,y = −vy.

Then applying the previous equality to a sequence of points converging to ξ and using
the uniform convergence on compact sets to the Busemann function bx,ξ we get that it
is C1 and that grad bx,ξ = −vξ.

Let z, y be two points in M and X be a vector in TzM , consider the Jacobi field JX
along σz,y with conditions JX(0) = X and JX(d(z, y)) = 0. Some computations show
that

DXvy = J ′X(0)⊥,

where J ′X(0)⊥ indicates the component of J ′X(0) orthogonal to vy(z). Again we have to
apply the previous equality to a sequence of points converging to ξ and use properties of
nonpositve curvature to obtain the covariant derivative of the gradient of the Busemann
function on the left side. The right side converges to the stable Jacobi field along the
ray σx,ξ with initial condition X by Proposition 12.
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We deduce that the weak stable manifold at v is the set

W so(v) = {− grad bx,ξ(z) | z ∈M}

where x = π(v) and ξ = γv(∞), and the stable manifold is

W s(v) = {− grad bx,ξ(z) | z ∈M, bx,ξ(z) = 0}.

In other words, the stable manifold at v is the set of normal inward vectors to the horo-
sphere centered at ξ passing through x. We also deduce that W s(v) is a C1 submanifold
of the unitary tangent bundle T 1M .

The set of tangent spaces to the stable manifold form the so-called tangent distribu-
tion Es of W s. These spaces are

Es(v) = TvW
s(v) = {(X,Y ) ∈ TvT 1M |X⊥v, Y = J ′X(0)},

because the first component has to be tangent to the horosphere, thus perpendicular
to v by Proposition 19, and the second has to be J ′X(0), where JX is the unique stable
Jacobi field along γv with initial condition X.

The stable manifold at v can be also defined as

W s(v) = {w ∈ T 1M | d1(gt(v), gt(w))
t→+∞−−−−→ 0},

where d1 is the Riemannian distance associated to the Sasaki metric on the unitary
tangent bundle T 1M . If we add some hypothesis to the manifold M , the two definitions
are equivalent because of the following lemma.

Lemma 6. Let M be a Hadamard manifold with sectional curvature pinched between
two negative constants. Then the distance d1 associated to the Sasaki metric on the
unitary tangent bundle T 1M is equivalent to the distance d̃ given by

d̃(v, w) = d(γv(0), γw(0)) + d(γv(1), γw(1)) ∀v, w ∈ T 1M.

This implies the equivalence of the two definitions because if two geodesic converge,
d(γv(t), γv(t))→ 0, then in the distance of the lemma we have

d̃(gt(v), gt(w)) = d(γgt(v)(0), γgt(w)(0)) + d(γgt(v)(1), γgt(w)(1)) =

d(γv(t), γw(t)) + d(γv(t+ 1), γw(t+ 1))→ 0,

so they converge also in the distance d1. The converse is clearly true.

The unstable manifold at v in T 1M is the set

W u(v) = {w ∈ T 1M | d(γv(t), γw(t))
t→−∞−−−−→ 0}.

All the results seen in this section are still valid for the unstable manifold if we reverse
the time. In fact, since g−t(v) = −gt(−v) for all real t and v in T 1M , we see that the
unstable manifold at v is

W u(v) = −W s(−v).

Similarly, we can define the weak unstable manifold.

So far we have worked under the hypothesis that M is a Hadamard manifold. For
a complete Riemannian manifold M with nonpositive curvature which is not simply
connected, then its universal cover M̃ is a Hadamard manifold. We can define the
strong (weak) stable (unstable) manifold at v in T 1M as the projection of the stable
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manifold at one lift ṽ of v. In the same way, horospheres, tangent distributions Es, Eu,
etc. are moved to the manifold M .

To finish the section, let us compute the horocycles (this is the name that receive
horospheres in dimension 2) for the case of the hyperbolic plane. Some computation
show that asymptotic classes of rays are identified with the endpoint of the geodesic
contained on the border R∪{∞} of H.

We compute the Busemann function at ∞ based at i. The geodesic joining i to
infinity is σ(t) = iet. Let z = x + iy in H and consider the point τ(t) = x + iet. A
computation using hyperbolic lengths shows that the distance between z and σ(t) is
bounded below by the distance between z and τ(t). On the other side, the length of
the path joining z and τ(t) vertically and then joining τ(t) to σ(t) is greater than the
distance between z and σ(t). Hence, we obtain

t− t0 = d(z, τ(t)) ≤ d(z, σ(t)) ≤ d(z, τ(t)) +
|x|
et

= t− t0 +
|x|
et
,

where t0 = log y and we assume that t ≥ t0. Therefore, the Busemann function at the
point z is

bi,∞(z) = lim
t→+∞

(d(σ(t), z)− t) = −t0 = − log Im(z).

We deduce that the horocycles centered at infinity are just horizontal lines. Using the
fact that Busemann function are preserved by isometries, we can obtain the horocycles
centered at a given point ξ in R. They are the images of horizontal lines by homographies
of PSL2(R) that send ∞ to ξ, that is to say, circles tangent to the real line at the point
ξ. They coincide with the projections of stable manifolds that we gave in Chapter 3.

4.2 The Hopf argument

Our ultimate goal is to prove the ergodicity of the geodesic flow with respect to the
Liouville measure on a compact manifold of negative curvature. In other words, we
have to show that every gt-invariant function is constant almost everywhere. Morally,
the proof has two steps: firstly, we show that an invariant function by the flow is
invariant by the stable and unstable manifolds, in some sense that we will specify, and
secondly, we will use a regularity property of the stable and unstable manifolds, called
absolutely continuity, to conclude that if a function is invariant by these manifolds, then
it is constant almost everywhere.

The key point of this argument is the absolutely continuity of the stable and unstable
manifolds. The previous argument was first applied by E. Hopf in the case of surfaces
of curvature −1 of finite volume [Hop36]. It was the first known proof of the ergodicity
of geodesic flow in this situation, which is the reason why this way to proceed is known
as the Hopf argument. We will add some remarks later to explain why the stable and
unstable manifolds are absolutely continuous. The proof of absolutely continuity when
the curvature is variable requires a more technical study of the stable and unstable
manifolds, that we have already started and we will finish in the next sections.

4.2.1 Foliations

We will use the language of foliations, because it captures the essence of the problem.
If W = {Wi}i∈I is a partition of the manifold X, for all x in X, we will denote by W (x)
the unique element of W that contains x. In addition, let Bk denote the closed unit ball
of Rk.
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Definition 10. Let Xn be a manifold. A k-dimensional C0-foliation with C1 leaves is
a partition W in k-dimensional connected C1 submanifolds such that, for all x in X,
there exists a neighborhood U of x and a homeomorphism ϕ : Bk × Bn−k → U with
ϕ(0, 0) = x satisfying, for all z in Bn−k,

(i) the image by ϕ of the set Bk × {z} is the connected component WU (ϕ(0, z)) of
W (ϕ(0, z)) ∩ U containing ϕ(0, z),

(ii) the map ϕ( · , z) is a C1 diffeomorphism between Bk and WU (ϕ(0, z)), depending
continuously on z in the C1-topology.

We will say that W is a C1-foliation if the map ϕ is a diffeomorphism.

The set of stable and unstable manifolds are examples of C0-foliations with C1-leaves
of the unitary tangent bundle T 1M , in Section 4.1.3 we discussed their regularity. We
will refer to them as the stable foliation W s, the unstable foliation W u and analogously
for the weak ones, W so and W uo.

Definition 11. Let X be a Riemannian manifold of finite volume and W be a partition.
We say that a function f : X → R is invariant by the partition W if there is a set Ω with
complement of zero volume measure such that, for all x, y in Ω, the fact that y ∈W (x)
implies that f(y) = f(x).

Let Φt be a continuous flow on X. For all x in X, we define the stable set at x as
the set

V s(x) = {y ∈ X | d(Φt(x),Φt(y))
t→+∞−−−−→ 0}.

The stable sets form a partition V s. There are also the weak stable sets, defined as

V so(x) =
⋃
t∈R

Φt(V s(x)) =
⋃
t∈R

W s(Φt(x)),

which form the weak stable partition V so. Analogously we can define unstable partitions
V u and V uo.

We recall the Birkhoff ergodic theorem.

Theorem 8. Let (X,A, µ) be a finite measure space, Φt be a measure preserving flow
and f : X → R and integrable function. Then, for µ-almost every x in X, the Birkhoff
averages

1

T

∫ T

0
f(Φt(x)) dµ

converge when T tends to infinity to a Φt-invariant function f̄ in L1(X,µ) and
∫
f̄dµ =∫

fdµ.

From this fact, we can deduce the first step of the Hopf argument. We will let dµ
be the volume form of the Riemannian manifold X and µ the volume measure.

Theorem 9. Let X be a Riemannian manifold of finite volume and Φt a continuous
flow on X preserving the volume measure. Let f : X → R be a Φt-invariant function.
Then f is invariant by the partitions V s, V u, V so and V uo.

Proof. By modifying the function f on a set of zero measure if necessary, we can suppose
that it is strictly invariant, i. e. f ◦ Φt = f for all real t.

By Lusin’s theorem, given a number ε > 0, we can fix a Borel set F such that
µ(X \ F ) < ε where the function f is uniformly continuous.
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The Birkhoff ergodic theorem applied to the indicator function of the set F says that
the average time spent by the orbit of x in the set F

τF (x) = lim
T→+∞

1

T
λ({t ∈ [0, T ] |Φt(x) ∈ F})

is defined for a.e. x in X, λ being the Lebesgue measure. In addition, the set AF =
{τF > 1

2} is invariant, because τF is.

Suppose that x and y are two points in AF such that y ∈ V so(x). There exists a
point z in V s(x) and a real number t0 such that y = Φt0(z). Then z is also in AF
because τF is invariant by the flow. Since τF (x), τF (z) > 1

2 , there exist a sequence of
real numbers tn converging to infinity such that Φtn(x),Φtn(z) ∈ F for all n. We also
know that the distance between the orbits of x and z goes to zero because they are in
the same stable set. Because of the uniform continuity on F and the invariance of f , we
have

|f(x)− f(y)| = |f(x)− f(z)| =
∣∣f(Φtn(x))− f(Φtn(z))

∣∣ n→+∞−−−−−→ 0.

The property holds in the set AF . Observe that its complement is AcF = {τF c ≥ 1
2}

and it has measure

µ(AcF ) =

∫
AcF

1 dµ ≤
∫
AcF

2τF c dµ ≤ 2

∫
X
τF c dµ = 2µ(F c) < 2ε.

Therefore we can consider a sequence of sets An such that µ(Acn) < 2−n, for all nat-
ural n, where the property holds. Then the sequence of sets Bn = ∩k≥nAk is increasing
and the measure of their complements goes to zero. That allows to conclude that there
is a set of full measure where the property is true.

The proof for the weak stable partition is analogous. The case of strong partitions
is clear from the weak ones.

In the case of the geodesic flow, stable and unstable partitions correspond to the
stable and unstable foliations W s and W u and the involved measure is the Liouville
measure.

4.2.2 Absolutely continuity

The second step in Hopf argument is the passage from the invariance on stable and
unstable foliations to the fact that the function is constant at least on a neighborhood
using a version of the Fubini’s theorem. But the foliations have not enough regularity a
priori, so we will need to introduce a new property, the absolute continuity, that allows
to complete the argument.

A transversal L of a k-dimensional foliation W on some manifold X is a (n − k)-
submanifold of X such that at every point x in L the tangent spaces of W (x) and L are
a direct sum TxL ⊕ TxW (x) = TxX. The induced volume form on a submanifold Y of
X will be denoted by dµY .

Definition 12. Let X be a Riemannian manifold, W be a k-dimensional C0-foliation
with C1-leaves We say that W is absolutely continuous if, for every transversal L and
for every open set U of X such that

U =
∐

x∈L∩U
WU (x),
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where Wu(x) is the connected component of W (x)∩U containing x and it is diffeomor-
phic to Bk, there exists a family of positive measurable functions δx : WU (x)→ R, x ∈
L ∩ U , such that for every measurable subset A of U we have

µ(A) =

∫
L∩U

∫
WU (x)

1A(y)δx(y) dµWU (x)(y) dµL∩U (x).

The definition is a way of saying that the volume measure on the manifold can
be locally decomposed as a sum of measures on each leave of the foliation that are
equivalent to the induced volume measure. We have defined this new property because
of the following essential fact.

Proposition 20. Let X be a connected Riemannian manifold and let W1,W2 be two
absolutely continuous foliations of X such that at each point x in X we have TxW1(x)⊕
TxW2(x) = TxX. Let f : M → R be a measurable function. If the function f is invariant
by the foliations W1 and W2, then it is constant almost everywhere.

Proof. Let N1, N2 be null subsets such that for all x, y ∈ N1, N2, the fact that y ∈
W1(x),W2(x) implies f(x) = f(y). We set N = N1 ∪N2 and consider the full measure
subset X̄ = X \N where f is constant on the leaves of both W1 and W2.

Let x be a point in X. By hypothesis W1(x) is a transversal of the foliation W2.
There exists a neighborhood U of x satisfying

U =
∐

y∈W1U (x)

W2U (y).

The volume measure of N ∩ U is zero. By the absolute continuity of W2 we deduce
that for a.e. y in W1U (x) the set W2U (y)\N has full µW2U (y)-measure. We fix an y that
has an open neighborhood V ⊂ U of y containing x and such that V is the union of the
local leaves W1V (z) for z in W2V (y). On the set W2U (y) \N the function f is constant
equal to c in R.

We consider the subset

Ω =
⋃

z∈W2V (y)\N

W1V (z)

of V . Then, since W2(y) is a transversal of the foliation W1, by the absolute continuity
we get that Ω has full measure in V . Every point w in Ω \ N is in the W1-leaf of
some z in W2V (y) \N . Since the function is constant in the leaves of W1 outside N , it
follows f(w) = f(z) = c. Finally, the set Ω \ N has full measure in the neighborhood
V of x, hence f is locally a. e. constant. We conclude that f is a.e constant on X by
connectedness.

We want to apply the previous proposition to the case of the geodesic flow. The
foliations we use have to be transversal, in the sense that at each point the tangent
spaces of the two leaves are in direct sum, and have complementary dimensions. The
tangent space at v of the unitary tangent bundle is decomposed in three subspaces,
namely, the stable space Es(v), the unstable space Eu(v) and the space of the direction
of the flow, as we have seen in Section 4.1.3. The tangent space of the weak stable
manifolds is the sum of the corresponding strong space and the direction of the flow.
Therefore, Proposition 20 has to be applied to foliations W s and W uo, or vice versa.
We already know that any gt-invariant function is invariant by the two foliations and we
are going to prove that foliations W s and W u are absolutely continuous. The following
result will allow to deduce that W uo is also absolutely continuous.
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Let W,W1,W2 be three foliations of X of dimensions d, d1, d2 with d = d1 + d2. We
say that W1 and W2 are integrable and that W is the integral hull of W1 and W2 if they
are transversal and, for all x in X, we have

W (x) = ∪y∈W1(x)W2(y) = ∪y∈W2(x)W1(y).

Lemma 7. Let W1 and W2 two integrable C0-foliations with C1-leaves of a Riemannian
manifold X with integral hull W . If W1 is C1 and W2 is absolutely continuous, then W
is absolutely continuous.

Proof. Let L be a transversal of W and U an open set that is the union of the local
leaves WU (x) where x is in L ∩ U . Then the set L̃ = ∪x∈L∩UW1U (x) is a transversal
for the foliation W2. By hypothesis, W2 is absolutely continuous, so for all measurable
subset A of U we have

µ(A) =

∫
L̃

∫
W2U (y)

1A(z)δy(z) dµW2U (y)(z) dµL̃(y).

The restriction of W1 to L̃ is a C1-foliation. Then there exists a continuous Jacobian
j such that for all integrable function h we have∫

L̃
h(y) dµL̃(y) =

∫
L∩U

∫
W1U (x)

h(y)j(x, y) dµW1U (x)(y) dµL∩U (x).

The restriction of W1 at each leaf W (x) is a C1-foliation. So there exist a family of
Jacobians ηx such that for all integrable function g, we have the equality∫

WU (x)
g(z)dµWU (x)(z) =

∫
W2U (x)

∫
W1U (y)

g(z)ηx(y, z)dµW1U (y)(z)dµW2U (x)(y).

Changing the order of integrals by Fubini and combining the three formulas we can
express the measure of A as an integral on L of an integral on the leaves of W and we
can conclude that W is absolutely continuous.

By Equation 4.7, the weak unstable foliation W uo is the integral hull of W u and
the foliation of the unitary tangent bundle by orbits of the geodesic flow, which is
differentiable. If we show that the strong unstable foliation is absolutely continuous, we
will be able to deduce that the weak one is absolutely continuous too.

4.2.3 The case of surfaces with curvature −1

Let us come back to the manifolds of constant curvature. In Chapter 3 we studied
the stable and unstable manifolds of the hyperbolic plane and we saw that there is a
coordinate system (s, t, u) of the unitary tangent manifold. This system has the vertical
upward vector v0 at i as origin. If we fix a value of u then s, t parametrize the weak
stable manifold of the point h−u (v0). On the contrary, if we fix values of s and t, the
parameter u moves along the strong unstable manifold at gt(h

+
s (v0)).

We showed that in these coordinates the Liouville measure is expressed as an integral
of a Jacobian, that we computed, on the weak stable and strong stable manifolds,
because s, t, u are all arc length parameters. Since we already know that a gt-invariant
function is invariant by stable and unstable manifolds, the argument used in the proof
of Proposition 20 allows to conclude that the function is constant almost everywhere.
As we have said, the proof of ergodicity in constant curvature is simpler and it came
before than the general case.
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4.2.4 Transversal absolute continuity

All that remains to do is to prove the ergodicity of geodesic flow is to show the absolute
continuity of stable and unstable foliations. In fact, we will prove that they satisfy a
stronger property than absolute continuity that we will define next.

Definition 13. Let W be a foliation of a Riemannian manifold X, x1 be a point
X, x2 a point in the leaf W (x1) and L1, L2 two transversals containing the points
x1, x2, respectively. There are small enough neighborhoods U1, U2 of x1, x2 in L1, L2,
respectively, such that for every point y in U1 the intersection of the leaf W (y) and the
set U2 is a unique point. The Poincaré map is the homeomorphism p : U1 → U2 that
sends y to this unique point.

We say that the foliation W is transversally absolutely continuous if for every
Poincaré map p : U1 → U2 there is a positive measurable function q : U1 → R, called
the Jacobian of p, such that for every measurable subset A of U1 we have

µL2(p(A)) =

∫
U1

1A(y)q(y) dµL1(y).

Next we will establish the relation between the two properties.

Proposition 21. Let W be a foliation of a Riemannian manifold X. If W is transver-
sally absolutely continuous, then it is absolutely continuous.

Proof. Let L be a transversal, U be an open set of X that is the union of the local
leaves WU (y) where y is in L ∩ U and x be a point in L ∩ U . The transversal L can be
extended to a C1-foliation F such that F (x) = L and

U =
∐

y∈WU (x)

FU (y).

This foliation is absolutely continuous and transversally absolutely continuous because
it is differentiable. We apply the absolutely continuity for the transversal WU (x) of F .
There exists a family of positive measurable functions δ̄y : FU (y) → R such that for
every measurable subset A of U , we have

µ(A) =

∫
WU (x)

∫
FU (y)

1A(z)δ̄y(z) dµFU (y)(z) dµWU (x)(y).

Now we apply the transversally absolutely continuity of W between the transversals
FU (x) = L ∩ U and FU (y). We denote by py the Poincaré map between the two
tranversals and qy its Jacobian. We can write the equality∫

FU (y)
1A(z)δ̄y(z) dµFU (y)(z) =

∫
L∩U

1A(py(s))δ̄y(py(s))qy(s) dµL∩U (s).

We put the previous expression in the first equation and change the order of inte-
gration by Fubini,

µ(A) =

∫
L∩U

∫
WU (x)

1A(py(s))δ̄y(py(s))qy(s) dµWU (x)(y) dµL∩U (s).

Finally, we use the transversally absolutely continuity of F between the transversals
WU (x) and WU (s). We let p̄s denote the Poincaré map and q̄s its Jacobian. We notice
that if y = p̄−1

s (r), where r ∈ U , then py(s) = r. Hence, it follows that

µ(A) =

∫
L∩U

∫
WU (s)

1A(r)δ̄p̄−1
s (r)(r)qp̄−1

s (r)(s)q̄
−1
s (r) dµWU (s)(r) dµL∩U (s).

Therefore, the foliation W is absolutely continuous.
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4.3 Anosov flows

In this section, we study a class of flows introduced by D. V. Anosov that are a gener-
alization of the geodesic flow, copying the hyperbolicity of its differential. Let M be a
compact Riemannian manifold and Φt a differentiable flow on M . If the flow is gener-
ated by a vector field X, i. e. X(x) = d

dt |t=0Φt(x), we will denote the direction of the
flow by Eo(x) := 〈X(x)〉.

Definition 14. We say that Φt is Anosov if it has no fixed points and for every x in
M there exist two proper Φt-invariant subspaces Es(x), Eu(x) of TxM , and constants
C > 0, λ ∈ (0, 1) such that

(i) Es(x)⊕ Eu(x)⊕ Eo(x) = TxM ,

(ii) ‖dxΦt(u)‖ ≤ Cλt‖u‖, ∀t ≥ 0, ∀u ∈ Es(x),

(iii) ‖dxΦ−t(u)‖ ≤ Cλt‖u‖, ∀t ≥ 0, ∀u ∈ Eu(x).

The condition of not having fixed points is equivalent to say that Eo(x) has always
dimension 1, or equivalently, X(x) 6= 0 for all x in M . The Φt-invariance of Es,u(x)
means that dxΦt(Es,u(x)) = Es,u(Φt(x)). For an Anosov flow, spaces Es(x) and Eu(x)
are uniquely determined by conditions 2 and 3.

We are interested in a distance between subspaces of tangent spaces. We will give
the definition of one distance convenient for our purpose, but in the literature we can
find other distances equivalent to this one. Let x, y be two points in M , F a subspace
of TxM and H a subspace of TyM . Let Tx,y : TxM → TyM be the parallel transport on
the minimizing geodesic segment [x, y] between x and y. Define the distance

D(F,H) = d(x, y) + dGr(Tx,yF,H)

where d(x, y) stands for the Riemannian distance and dGr is a distance on the set
of subspaces of the vectors space TyM . We can define it in the following manner:
let (V, ‖ · ‖) a normed vector space, U,W two subspaces and PU , PW the orthogonal
projections on each space, we set

dGr(U,W ) = |||PU − PW |||

where ||| · ||| is the operator norm associated to ‖ · ‖. Having defined the distance, we can
announce the following property.

Lemma 8. Es(x) and Eu(x) depend continuously on x.

Proof. Let xn → x be a converging sequence. We will start by showing that there is
a subsequence such that Es(xnk) → Es(x) and Eu(xnk) → Eu(x). First, extracting
a subsequence if necessary, we suppose that dimEs(xn) = k and dimEu(xn) = l for
all n, where k + l + 1 = dimM . Consider the family of parallel transported subspaces
{Txn,xEs(xn)}n living in the Grassmannian Grk(TxM) of k-dimensional subspaces of
TxM . By the compacity of the Grassmannian, there is a converging subsequence

Txnk ,xE
s(xnk)→ Hs.

In addition, as xnk → x, we see from the definition of the distance between subspaces
with different basepoints that the sequence Es(xnk) itself converges to the subespace Hs

of TxM . Repeating the argument for the other subspace we find a sequence such that
limEs(xnk) = Hs and limEu(xnk) = Hu. A vector v in Hs is a limit of vectors satisfying
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condition 2 in Definition 14. Since dzΦ
t(w) is continuous on z in M and w in TzM , v

will satisfy the condition too. Therefore, we have Hs ⊂ Es(x) and Hu ⊂ Eu(x). Finally,
by dimension, we deduce the equalities limEs(xnk) = Hs = Es(x) and limEu(xnk) =
Hu = Eu(x).

This is enough to prove the continuity. In effect, suppose that the sequence Es(xn)
does not converge to Es(x). For some δ > 0, we can find a subsequence nj such that
D(Es(xnj ), E

s(x)) ≥ δ. By compacity, the last sequence has a converging subsequence
Es(xnji ) to some space H. Then, the inequality D(H,Es(x)) ≥ δ holds. Finally,
applying the first part of the proof to the last sequence, there is a subsequence of Es(xnji )
converging to Es(x), but this contradicts the lower bound D(H,Es(x)) ≥ δ.

We can conclude that Es and Eu are continuous Φt-invariant distributions, called
the stable distribution and the unstable distribution, respectively. It turns out that these
distributions satisfy a stronger regularity condition that we will see next.

First, we will slightly modify the metric of the manifold to simplify the computations.
Fix numbers β ∈ (λ, 1) and T > 0. Every vector v in TxM has a decomposition
v = vs + vu + vo ∈ Es(x)⊕ Eu(x)⊕ Eo(x). Define

|vs| =
∫ T

0

‖dxΦτ (vs)‖
βτ

dτ, |vu| =
∫ T

0

‖dxΦ−τ (vu)‖
βτ

dτ,

|vo| = sup
t∈R

∥∥dxΦt(vo)
∥∥ , |v|2 = |vs|2 + |vu|2 + |vo|2 .

By compacity there are constants C1, C2 > 0 such that for all z in M , we have
C1 ≤ ‖X(z)‖ ≤ C2. Hence, for all x in M , for all t in R,

C1

C2
‖vo‖ ≤

∥∥dxΦt(vo)
∥∥ ≤ C2

C1
‖vo‖ .

It is not difficult to verify that | · | is a norm on each tangent space TxM , and it is
equivalent to ‖ · ‖ because all norms on a finite vector spaces are equivalent. The new
norm induces a Riemannian metric on M , which is equivalent to the original one because
of the compacity. From the definition, it is obvious that subspaces Es(x), Eu(x), Eo(x)
are pairwise orthogonal by the new metric.

We observe that∣∣dxΦt(vs)
∣∣ =

∫ T

0

∥∥dxΦτ+t(vs)
∥∥

βτ
dτ = βt

∫ t+T

t

‖dxΦτ (vs)‖
βτ

dτ =

= βt
(
|vs|+

∫ t+T

T

‖dxΦτ (vs)‖
βτ

dτ −
∫ t

0

‖dxΦτ (vs)‖
βτ

dτ

)
.

But ∫ t+T

T

‖dxΦτ (vs)‖
βτ

dτ =

∫ t

0

∥∥dxΦτ+T (vs)
∥∥

βτ+T
dτ ≤ CλT

βT

∫ t

0

‖dxΦτ (vs)‖
βτ

dτ,

so, if we suppose that T is big enough so that C(λ/β)T < 1, then we get
∣∣dxΦt(vs)

∣∣ ≤
βt |vs|. Similarly, we have

∣∣dxΦ−t(vu)
∣∣ ≤ βt |vu| for all nonnegative t, and it is clear that∣∣dxΦ−t(vo)

∣∣ = |vo| for t in R. With this new metric, called adjusted metric, the flow is
still Anosov, with normalized constant and orthogonality between stable, unstable and
flow directions.

From now on all Anosov flows will be considered with an adjusted metric and con-
stants C = 1 and λ ∈ (0, 1). Next, we look at the evolution of subspaces under the
flow.
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Lemma 9. Let Φt be an Anosov flow on M and x a point of M . Then, for every
0 < θ < π/2, there exists a constant K > 0 such that for every subspace H of TxM of
the same dimension as Es(x) that satisfies

min
v∈H\{0}

|∠(v,Eu(x)⊕ Eo(x))| ≥ θ

then, for t ≥ 0,
D(dxΦ−t(H), Es(Φ−t(x))) ≤ KλtD(H,Es(x)). (4.9)

Figure 4.1: Evolution of subspaces under the flow.

Proof. The proof relies on the fact that the stable component of H decreases with time t
and the rest remains bounded, thus the angle between the subspaces H and Es reduces
when time goes back (see Figure 4.1). Let v in H with norm ‖v‖ = 1. It decomposes as
v = vs + vu + vo ∈ Es(x) ⊕ Eu(x) ⊕ Eo(x). From the Anosov flow conditions we have,
for every nonnegative t,

‖dxΦ−t(vs)‖ ≥ λ−t‖vs‖,

‖dxΦ−t(vu)‖ ≤ λt‖vu‖ ≤ ‖vu‖.

Denoting vuo = vu+vo, it follows the inequality
∥∥dxΦ−t(vuo)

∥∥ ≤ ‖vuo‖. The tangent
of the angle formed by the vector dxΦ−t(v) with the stable subspace is∥∥dxΦ−t(vuo)

∥∥
‖dxΦ−t(vs)‖

≤ λt ‖vuo‖
‖vs‖

Now, the quantity ‖vuo‖ is the cosine of v with the stable subspace, so it is bounded by
a constant multiple of the distance D(H,Es(x)). By hypothesis, ‖vs‖ is bounded below
by a constant (sin θ). Hence, we obtain∥∥dxΦ−t(vuo)

∥∥
‖dxΦ−t(vs)‖

≤ AλtD(H,Es(x))

for some constant A > 0. Since the inequality is valid for all v in H of norm ‖v‖ = 1
and the supremum of all the tangents of angles between vectors of H and the subspace
dxΦtEs(x) bounds the distance between subspaces (up to some constant), we obtain the
desired inequality.

We say that a distribution {E(x)}x∈M , where each E(x) is a subspace of the tangent
space TxM , is Hölder continuous if there exist constants A,α > 0 such that, for all points
x, y in M ,

D(E(x), E(y)) ≤ Ad(x, y)α.
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Theorem 10. Let Φt be a C2 Anosov flow. Then the distributions Es, Eu, Eso :=
Es ⊕ Eo, Euo := Eu ⊕ Eo are Hölder continuous.

Proof. Let us first prove the property for the stable distribution Es. Recall that the
distance between two stable subspaces is D(Es(x), Es(y)) = dGr(E

s(x), Ty,xE
s(y)) +

d(x, y), so we only have to deal with the first term, since the second is clearly Hölder
continuous. We will denote Φ = Φ1.

Let x be a point in M . For a natural number m, we consider coordinate balls Vk
centered at Φk(x), for 0 ≤ k ≤ m. Let ε1 > 0 be small enough so that Φk(B(x, ε1)) ⊂
Vk, k = 0, . . . ,m, where B(x, ε1) is the ball of radius ε1 centered at x. For each y in
B(x, ε1), let Ak denote the matrix of dΦm−k(x)Φ

−1 in the chart of Vm−k and Bk denote

the matrix of Ty,x◦dΦm−k(y)Φ
−1◦Tx,y in the same chart. In addition, if v is in Es(Φm(y)),

for 0 ≤ k ≤ m, we set

vk = TΦm−k(y),Φm−k(x) ◦ dΦm(y)Φ
−k(v),

vk = vsk + vuok ∈ Es(Φm−k(x))⊕ Euo(Φm−k(x)).

In Figure 4.2 we can see the situation and these notations.

Figure 4.2: Notations for the proof of Hölder continuity.

Consider constants κ ∈ (
√
λ, 1),

D > max

{
sup
z∈M
‖dzΦ‖ ,

1

κ

}
, M ≥ sup

v∈TM

∥∥d2
vΦ
−1
∥∥ ,

that exist because Φt is C2 and M is compact. Fix also δ < (1−
√
λ)/2.

The distribution Es is continuous and M is compact, so Es is uniformly continuous.
Consequently, there exists a constant ε0 > 0 such that if z, z′ are two points in M at
distance d(z, z′) < ε0 then we have

sup
v∈Es(z′)

∥∥(Tz′,zv)uo∥∥∥∥(Tz′,zv)s∥∥ ≤ δ,
because the left side is equivalent to the distance between Es(z) and the parallel trans-
port of Es(z′) when they are small.

Now, take

ε < min

{
1−
√
λ

2λM
,
δ(κ−

√
λ)√

λM
, ε0, ε1

}
.
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We claim that for all y in M at distance d(y, x) < ε and for all integer m ≥ 0 such that
Dmd(x, y) < ε, setting the discussed notations, we have

‖vuok ‖∥∥vsk∥∥ ≤ δκk for 0 ≤ k ≤ m,

for all v ∈ Es(Φm(y)). The proof is done by induction. The case k = 0 is true by the
choice of ε. Suppose it is true for k ≤ m− 1 and we show that it also holds for k + 1.

The Anosov conditions imply ‖Akvsk‖ ≥ λ−1 ‖vsk‖ and ‖Akvuok ‖ ≤ ‖vuok ‖. In addition,
we can write

vk+1 = Bkvk = Akvk + (Bk −Ak)vk = Akv
s
k +Akv

uo
k + (Bk −Ak)vk,

therefore ∥∥vuok+1

∥∥∥∥vsk+1

∥∥ ≤ ‖Akvuok ‖+ ‖Bk −Ak‖ ‖vk‖∥∥Akvsk∥∥− ‖Bk −Ak‖ ‖vk‖ ≤ δκk ‖vsk‖+MεD−k ‖vk‖
λ−1

∥∥vsk∥∥−Mε ‖vk‖

where we used that
‖Bk −Ak‖ ≤M d(Φm−k(x),Φm−k(y)),

d(Φm−k(x),Φm−k(y)) ≤ Dm−k d(x, y) < εD−k < ε.

Next, since ‖vk‖ ≤ ‖vsk‖+ ‖vuok ‖ ≤ ‖vsk‖+ δκk ‖vsk‖ ≤ ‖vsk‖+ δ ‖vk‖, we obtain∥∥vuok+1

∥∥∥∥vsk+1

∥∥ ≤ δκk ‖vk‖+Mεκk ‖vk‖
λ−1(1− δ) ‖vk‖ −Mε ‖vk‖

= (δ +Mε)
√
λκk

√
λ

1− δ − λMε
.

The fraction is less than 1 because of the choice of δ and ε. The choice of ε ensures that
(δ +Mε)

√
λ < δκ as well, and we get the desired inequality.

In particular, if m is the integer part of (log ε− log d(x, y))/ logD,

‖vuom ‖
‖vsm‖

≤ δκm ≤ δκ
log ε−log d(x,y)

logD
−1

= δκ
log ε
logD

−1
d(x, y)

− log κ
logD .

This is valid for every v in Es(Φm(y)), which covers all the vectors vm in Ty,xE
s(y),

thus dGr(E
s(x), Ty,xE

s(y)) ≤ Ad(x, y)α for some A > 0 and α = − log κ/ logD > 0.
Modifying the constants, this is valid not only if d(x, y) < ε, but for all y in M , because
M is compact. Again using the compacity, we find constants that do not depend on x
in M . This proves the Hölder continuity of Es.

Reversing the time, we obtain the property for the distribution Eu. The distribution
Eo has regularity C1, and in particular Hölder. Finally, Eso and Euo are Hölder because
they are sums of Hölder distributions.

To finish the section we recall the results in Section 4.1 to show that the geodesic
flow gt on the unitary tangent bundle of a compact manifold with negative curvature
satisfies the Anosov conditions. The stable and unstable subspaces in the definition of
Anosov flow coincide with the ones we had described geometrically as

Es(v) = {(X,Y ) ∈ TvT 1M |X⊥v, Y = JsX
′(0)},

Eu(v) = {(X,Y ) ∈ TvT 1M |X⊥v, Y = −JuX
′(0)},

where JsX and JuX are the stable and unstable Jacobi fields along the geodesic γv with
initial condition X. The first of the Anosov conditions is clearly satisfied because spaces
Es(v), Eu(v) and E0(v) = 〈(v, 0)〉 are disjoint and their dimensions are complementary.
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Let us show that the second condition is satisfied. Given v in T 1M and (X,Y ) in
Es(v), the stable Jacobi field JX satisfies JX(0) = X and J ′X(0) = Y , so we have for
t ≥ 0

‖dvgt(X,Y )‖ =
∥∥(JX(t), J ′X(t))

∥∥ =

√
‖JX(t)‖2 +

∥∥J ′X(t)
∥∥2 ≤ ‖(X,Y )‖

√
1 + b e−at

by Proposition 13, where −a2 and −b2 are the upper and lower bounds of the sectional
curvature. The third Anosov condition follows from the analogous result for unstable
Jacobi fields.

4.4 Proof of the ergodicity of the geodesic flow

In this section we will complete the proof of the ergodicity of the geodesic flow for a
compact manifold. We will need the following result from measure theory.

Lemma 10. Let X,Y be two compact metric spaces and (X,A, µ), (Y,B, ν) be two Borel
measured spaces. Let p : X → Y and pn : X → Y , for all natural n, be continuous maps.
Suppose that

(i) the maps pn, n ∈ N, and p are homeomorphisms onto their image,

(ii) the sequence pn converges uniformly to p,

(iii) there is a constant C such that for all measurable subset A of X, we have ν(pn(A)) ≤
Cµ(A).

Then, for all measurable subset A of X we have ν(p(A)) ≤ Cµ(A).

Finally, we are prepared to show the transversally absolutely continuity of the stable
and unstable foliations.

Theorem 11. Let M be a C3 compact Riemannian manifold with negative sectional
curvature. Then the stable and unstable foliations, W s and W u, of the unitary tangent
bundle T 1M are transversally absolutely continuous.

Proof. We will treat the case of the stable foliation, the other case is analogous.

We need to show that for every pair of points v1, v2 in T 1M such that v2 ∈W s(v1),
for every pair of transversals L1, L2 to W s containing the points v1, v2, respectively, the
Poincaré map p : U1 → U2, defined between two neighborhoods of the points vi in Li,
has a Jacobian q : U1 → R. Figure 4.3 shows how the Poincaré map acts on the disk.

The set of inward normal vectors of a sphere in M of radius k is a submanifold of the
unitary tangent bundle. The set of all these submanifolds with k fixed forms a foliation,
that will be denoted by Σk. In Section 4.1.3 we have seen that spheres of increasing radius
normal to a vector converge uniformly on compact sets to the horosphere associated to
the vector. Thus, leaves of Σk converge uniformly on compact sets to leaves of the stable
foliations W s when k tends to infinity. We will let k ∈ N tend to infinity.

If k is big enough, L1 and L2 will be transversals of the foliation Σk at least on the
neighborhoods U1 and U2. We consider the Poincaré map pk : U1 → U2 of the foliation
Σk. We want to apply Lemma 10 to the maps pk and p on properly chosen compacts
with the induced volume measure. The first condition it is clearly satisfied and the
second is a consequence of the uniform convergence on compact sets of the leaves of Σk

to stable manifolds.
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Figure 4.3: The Poincaré map p of the foliation by stable manifolds on the disk. In
green we represent (the projection of) the stable manifold of v1 and in red the stable
manifold of v. Black arcs are geodesics.

We will show that the Jacobians qk of pk are uniformly bounded in k, that implies
the third condition. Then, the lemma allows to conclude that the pullback by p of the
volume measure µL2 is absolutely continuous with respect to µL1 and that is equivalent
to the existence and boundedness of the Jacobian q.

We can reduce the problem to only two cases. We consider the weak unstable
manifolds at points v1 and v2, that are transversals of the foliation W s. Let puo be the
Poincaré map between the transversals W uo(v1) and W uo(v2) and, for i = 1, 2, let pLi
be the Poincaré map between Li and W uo(vi). Then we can write the decomposition

p = p−1
L2
◦ puo ◦ pL1 .

So it will be sufficient to prove the existence and boundedness of Jacobians of maps be-
tween two unstable manifolds and between every transversal on a point and the unstable
manifold at the same point.

For the first case suppose we have Li = W so(vi), the maps p, pk and the Jacobians
q, qk as before. Let P (v2) : T 1M → T 1M be the map that at each vector v ∈ T 1M
associates the unique vector with basepoint π(v) that is in the weak stable manifold
W so(v2) of v2. Then the Poincaré map of the foliation by vectors normal to spheres of
radius k is decomposed as

pk = g−k ◦ P (v2) ◦ gk
if we restrict the geodesic flow gk to L1. In Figure 4.4, we represent schematically the
situation.

We restrict the map P (v2) : gk(L1) → gk(L2) and denote by J0 its Jacobian, that
exists because the map is differentiable. Notice that gk(Li) = Li because Li = W so(vi),
so J0 does not depend on k. We set the notations T 1

j (v) = Tgj(v)gj(L1) and T 2
j (v) =

Tgj(pk(v))gj(L2), for v in L1 and 0 ≤ j ≤ k−1. We can write the Jacobian of the Poincaré
map pk as a product of Jacobians of the time 1 flow g1 and J0.

qk =
k−1∏
j=0

(J2
j )−1 · J0 ·

k−1∏
j=0

J1
j , (4.10)
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Figure 4.4: The Poincaré map pk of the foliation by inward vectors to spheres of radius
k. In green we represent the stable manifold of v1 and in blue the sphere of radius k
such that v is normal inward.

where J1
j (v) = |det(dgj(v)g1|T 1

j (v))|,

and J2
j (v) = |det(dgj(pk(v))g1|T 2

j (v))|.

We notice that in fact T 1
j (v) = Euo(gj(v)) and T 2

j (v) = Euo(gj(pk(v))). We apply
the Hölder continuity of the weak unstable distribution. For all v in L1,

D(T 1
j (v), T 2

j (v)) ≤ Ad1(gj(v), gj(pk(v)))α, k ≥ 1, 0 ≤ j ≤ k − 1.

By Proposition 15, since v and pk(v) are unit inward vectors to the same sphere, we
will have, if k is big enough,

d1(gj(v), gj(pk(v))) ≤ Ce−ajd1(v, pk(v)), 0 ≤ j ≤ k − 1,

for some constants C, a > 0. It is clear that the factor d1(v, pk(v)) is bounded uniformly
in v and k. Hence, for k big enough

D(T 1
j (v), T 2

j (v)) ≤ Be−βj , 0 ≤ j ≤ k − 1, ∀v ∈ L1,

for some constants B, β > 0.

By hypothesis of regularity, the geodesic flow is C2, so the tangent map dg1 is
Lipschitz continuous i.e. there is a constant L > 0 such that

∣∣∣∣∣∣dvg1 − T−1
v,wdwg1 ◦ Tv,w

∣∣∣∣∣∣ ≤
Ld1(v, w) for all v, w in T 1M , where Tv,w is the parallel transport along the geodesic
connecting v to w and |||·||| is the operator norm of maps between TvT

1M and Tg1(v)T
1M .

The Jacobians J1
j (v) and J2

j (v) are the determinants in absolute value of the restricted

maps dgj(v)g1 : T 1
j (v) → T 1

j+1(v) and dgj(pk(v))g1 : T 2
j (v) → T 2

j+1(v), respectively. The

directions T 1
j (v) and T 2

j (v) are exponentially close, so∣∣J1
j (v)− J2

j (v)
∣∣ ≤ Ke−βj , 0 ≤ j ≤ k − 1, ∀v ∈ L1,

where K and β are constants. By the compactness of M the uniform norm ‖J ij‖ of the
Jacobians is separated away from zero, so we deduce

‖J1
j ‖

‖J2
j ‖
≤ 1 +K ′e−βj , 0 ≤ j ≤ k − 1,
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if k is big. Then, by Equation 4.10, we conclude that ‖qk‖ is uniformly bounded in k.

The second case is between a transversal L1 containing v1 and the weak unstable
manifold W so(v1) which has the role of L2. The proof follows the same idea. This time
we have the decomposition

pk = g−k ◦ P (v1) ◦ gk.

The only difference with the first case is that the restriction P (v1) : gk(L1)→ gk(L2) =
W so(v1) depends on k. However, since TvL1 is transversal to the stable space for v in
L1, we can apply a version of Lemma 9 for the weak unstable spaces and positive time
and obtain that

D(T 1
j (v), Euo(gj(v))) ≤ KλjD(TvL1, E

uo(v)) (4.11)

for some constants K > 1 and λ ∈ (0, 1). We can find constants such that the last
inequality is uniform in v. Hence the difference of the new and the old Jacobians
decreases exponentially in j in the uniform norm.

The same fact is used to estimate the distance between spaces T 1
j (v) and T 2

j (v) =
Euo(gj(pk(v))),

D(T 1
j (v), T 2

j (v)) ≤ D(T 1
j (v), Euo(gj(v))) +D(Euo(gj(v)), Euo(gj(pk(v))))

≤ B′e−β′j , 0 ≤ j ≤ k − 1, ∀v ∈ L1,

for some constant B′, β′ > 0. The rest of the proof goes analogously to the first case.

Putting all the pieces together we obtain the proof of the ergodicity of the geodesic
flow.

Theorem 12. Let M be a C3 compact Riemannian manifold with negative sectional
curvature. Then the geodesic flow gt on the unitary tangent bundle T 1M is ergodic with
respect to the Liouville measure.
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